Core conductive fibres based ESD protective garments. Contract 7-058-2012 Director project şl.dr.ing. Codrin Donciu Contractor: Universitatea Tehnică Gh. Asachi din Iași

Etapa II Cercetări asupra comportării ESD/EMC a panourilor de test pentru diverse tipologii de tricotare

Activitatea II.1 Tricotarea panourilor de test pentru diverse tipologii de tricotare. Adaptare echipamente

Activitatea II.2 Analiza și caracterizarea din punct de vedere dielectric a panourilor de test Activitatea II.3 Analiza și caracterizarea panourilor din punct de vedere ESD (Point to point measurement method si Charges dissipation evaluation by time decay measurement method) Activitatea II.4. Analiza și caracterizarea panourilor din punct de vedere EMC Activitatea II.5. Analiza și interpretarea rezultatelor, definirea configurației optime a tipologiei de

tricotare

Rezumat

Etapa a II de decontare intitulată Cercetări asupra comportării ESD/EMC a panourilor de test

pentru diverse tipologii de tricotare presupune realizarea unui set de mostre în condițiile în care se păstrează ca parametru constant tipul firului compozit și se modifică tipologia de tricotare, astfel încât, pe baza analizelor de caracterizare a parametrilor ESD/EMC să se stabilească configurația optimă de tricotare.

S-a stabilit dimensiunea de realizare a mostrelor de fir tricotat ca fiind de 15/30 cm, în concordanță cu cerințele sistemelor de măsurare și s-au tricotat 9 tipuri de

Fig. 1. Metodologia de cercetare aferentă tapei II.

mostre, fiecare având o tipologie proprie de tricotare.

Pentru identificarea tipologiei optime de tricotare s-au analizat și interpretat rezultatele următoarelor analize:

Analiza și caracterizarea din punct de vedere dielectric a panourilor de test ٠

- Analiza şi caracterizarea panourilor din punct de vedere ESD (Point to point measurement method si Charges dissipation evaluation by time decay measurement method)
- Analiza și caracterizarea panourilor din punct de vedere EMC

Tricotarea panourilor de test pentru diverse tipologii de tricotare. Adaptare echipamente

Evoluția specifică a firelor în structură conține ochiuri normale, ochiuri reținute (cu și fără flotări) și ochiuri duble. S-a considerat un nivel de complexitate al structurii simplu spre mediu, deoarece structuri cu un grad de complexitate ridicat (alte tipuri de desene) nu sunt utile acestui studiu și prezintă dificultăți în prelucrare, datorită prezenței firului metalic.

Mostrele au fost realizate pe o mașină de finețe 5E, care nu distruge firul metalic. Firul metalic a fost alimentat în paralel cu fire acrilice, Nm 32/2/2. Prezența firului metalic a micșorat semnificativ intensitatea și durata relaxării.

Firul metalic utilizat pentru toate cele 9 mostre realizate este de cupru emailat de 0.15mm. Pentru fiecare mostră în parte se prezintă în continuare următoarele informații:

- parametrii de tricotare;
- rezistivitatea electrică determinată prin metoda "Point to point";
- descrierea tipologiei de tricotare utilizată;
- imaginea mostrei și grafica de realizare;

Cod Mostra	PRV	
Structura tricotare	Patent de raport variabil	
Fir conductiv	Cu Em 0.15 mm	
Fir textil	Fir acrilic, Nm 32/2/2	
Desime Do (şir/5cm)	15.5	
Desime Dv (rând/5cm)	13	
Masa specifică (g/m²)	541	

Tricotul este modularizat – zone de glat (dispunere într-un plan a ochiurilor) alternează cu zone patent 1x1 (dispunere în două planuri a ochiurilor). Grosimea tricotului este variabilă. Ochiurile glat și patent au lungime diferită.

Cod Mostra	GR
Structura tricotare	Glat cu ochiuri reținute
Fir conductiv	Cu Em 0.15 mm
Fir textil	Fir acrilic, Nm 32/2/2
Desime Do (şir/5cm)	25.5
Desime Dv (rând/5cm)	15
Masa specifică (g/m ²)	530

Ochiurile reținute presupun că un ochi nu este descărcat în ciclul imediat următor formării sale, ceea ce duce la alungirea sa. În plus, în cazul legăturii glat, în dreptul ochiului reținut se dispune o flotare, care apare în primplan pe partea de spate. Ochiurile reținute au fost realizate în raport 3:1.

Rezistivitate electrică [Ω] 1.4*10¹⁸

Cod Mostra	Р3
Structura tricotare	Patent 3x3
Fir conductiv	Cu Em 0.15 mm
Fir textil	Fir acrilic, Nm 32/2/2
Desime Do (şir/5cm)	22.5
Desime Dv (rând/5cm)	16.5
Masa specifică (g/m²)	722

Legătura patent 3x3 este caracterizată de prezența ochiurilor glat și patent, ceea ce modifică dispunerea șirurilor în cele două planuri în raport cu dispunerea specifică legăturii patent 1x1.

Cod Mostra	P1x1	100
Structura tricotare	Patent 1x1	A ST
Fir conductiv	Cu Em 0.15 mm	6 m
Fir textil	Fir acrilic, Nm 32/2/2	18
Desime Do (şir/5cm)	20	12
Desime Dv (rând/5cm)	12	A REAL
Masa specifică (g/m²)	662	124

Tricoturile patent au ochiurile dispuse în două planuri, corespunzătoare celor două fonturi pe care se lucrează. Șirurile de ochiuri cu același aspect au tendința de a deveni tangente, deși prezența firului metalic diminuează acest fenomen.

Cod Mostra	MR
Structura tricotare	Milano Rib
Fir conductiv	Cu Em 0.15 mm
Fir textil	Fir acrilic, Nm 32/2/2
Desime Do (şir/5cm)	28
Desime Dv (rând/5cm)	12
Masa specifică (g/m ²)	645

În cazul tricotului Milano Rib, un rând de patent este urmat de un rând glat tubular. În structură apar ochiuri reținute, i=1 pe ambele părți ale tricotului, cu dispunere neuniformă. Fiecare șir de ochiuri (indiferent de aspect) conține un ochi normal și unul reținut.

Cod Mostra SF Structura tricotare Semifang **Fir conductiv** Cu Em 0.15 mm Fir textil Fir acrilic, Nm 32/2/2 Desime Do (şir/5cm) 11 Desime Dv (rând/5cm) 10.5 Masa specifică (g/m²) 672 Este o structură patent 1x1 cu ochiuri duble, ochiurile duble fiind dispuse pe o singură parte a tricotului. Prezența buclelor netransformate în ochi mărește pasului ochiului (distanțează șirurile). IV III

Rezistivitate electrică [Ω] 1.45*10¹⁸

Cod Mostra	Т	100
Structura tricotare	Glat tubular	-
Fir conductiv	Cu Em 0.15 mm	14.44
Fir textil	Fir acrilic, Nm 32/2/2	1.4
Desime Do (şir/5cm)	17	100
Desime Dv (rând/5cm)	12.5	000
Masa specifică (g/m²)	697	200

Tricotul este caracterizat de două straturi de ochiuri glat, dispuse independent (fără a se lega între ele). Poate fi considerat și un tub, produs pe o mașină circulară de tricotat.

		and the second
Cod Mostra	V1R	12 42 42 12 12 12 12 12 12 12 12 12 12 12 12 12
Structura tricotare	Val la 1 rând	The second s
Fir conductiv	Cu Em 0.15 mm	T- TOTA TOTA TOTA TOTA
Fir textil	Fir acrilic, Nm 32/2/2	an and a second and a second and
Desime Do (şir/5cm)	11	Cartanta cartala che
Desime Dv (rând/5cm)	12	Calle of the calle of the call
Masa specifică (g/m ²)	738	
Este un tricot obținut pr	in tricotarea unui rând de patent, urmat	de un rând de glat. Astfel, pe o parte a
tricotului apar ochiuri re	ținute, iar pe cealaltă parte ochiuri norm	ale.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Rezistivitate electrică [Ω]	1.4*10 ¹⁸

Analiza și caracterizarea din punct de vedere dielectric a panourilor de test

Spectroscopia dielectrică reprezintă analiza interacțiunii dintre un material si câmpul electric care acționează asupra sa. Sistemul *Novocontrol* folosit pentru determinarea parametrilor dielectrici ai mostrelor realizate este un sistem automat de măsurare folosit pentru o gamă de frecvență cuprinsă între 3x10⁻⁶ - 10⁷ Hz (12,5 decade) și se bazează pe un analizor dielectric de înaltă rezoluție Alpha A. Impedanța probei de măsurat este determinată direct prin măsurări senzitive de fază ale tensiunii și curentului probei, la o frecvență dată.

Probele de material au fost testate folosind electrozii cu diametrul de 40 mm iar grosimea medie a materialului în compresie montat in celula de măsurare a fost de 1.5 mm. Pentru preluarea, prelucrarea și interpretarea datelor au fost folosite pachetele software WinDETA si WinFIT dezvoltate special pentru analizorul dielectric de la Novocontrol.

Fig. 2. Sistemul Novocontrol și detaliu celulă de măsură

În figura 2 este prezent ansamblul sistemului de măsură a parametrilor dielectrici ai mostrelor realizate și de asemenea un detaliu al celulei de măsură echipată cu electrozi de 40 mm, între care se află situat un disc decupat din materialul supus testării.

Pentru cele 9 mostre au fost trasate caracteristicile următorilor parametri în funcție de frecvență: eps', tang(δ), modul eps, conductivitate, delta, capacitate paralelă, rezistență specifică. Graficele care reflectă evoluția acestor parametri în funcție de frecvență au fost trasate pentru fiecare parametru în parte pentru toate mostrele și sunt prezentate în figura 3.

Analiza și caracterizarea panourilor din punct de vedere ESD

Analiza și caracterizarea panourilor textile (mostrelor) s-a realizat pe un stand de măsurare compus dintr-un Charge Plate Monitor (CPM) de tip 268A-1T produs de Monroe Electronics, un electrod de descărcare, un întrerupător electrostatic normal deschis, un osciloscop și un set de elemente izolatoare electrostatic.

CPM conține o sursă internă de 5kV și un senzor de câmp electric. Prin intermediul sursei de înaltă tensiune, platanul CPM este încărcat până la potențialul de test (5kV și 3kV pozitiv/negativ) față de masa de descărcare.

Materialul supus testării este încărcat de către platan prin electrizare prin contact. După deconectarea sursei de tensiune se trece la etapa de descărcare prin conectarea electrodului la masa de descărcare. Timpul de descărcare este vizualizat și înregistrat prin intermediul osciloscopului. Toate elementele izolatoare utilizate în standul de măsurare au fost realizate din policarbonat.

Pentru fiecare mostră în parte s-au realizat 8 determinări obținute prin variația parametrilor (figura 4):

- tensiune de încărcare: 5kV și 3kV;
- polaritate: încărcare pozitivă și negativă față de masă;
- conectare la electrodul de masă: conectare prin extremitatea mostrei și conectare metalică direct prin firul de cupru fără izolație.

Analiza și caracterizarea panourilor din punct de vedere EMC

Standul de măsurare a eficienței de ecranare, cu ajutorul căruia au fost evaluate cele 9 mostre, a fost alcătuit dintr-un analizor de spectru GSP 827 prevăzut cu generator de semnal cu urmărire și o celulă Electro-Metrics EM-2107A interpusă între portul generatorului și portul analizorului.

Portul generatorului de semnal transmite semnalul de test de amplitudine cunoscută, către portul analizorului de spectru. Semnalul este atenuat ca amplitudine la parcurgerea ecranului electromagnetic (mostra evaluată) și ajunge la intrarea analizorului unde este evaluat din punct de vedere al amplitudinii și determină eficiența de ecranare în dBm, pentru frecvența generată. Mostrele sunt plasate între flanșele celulei Electro-Metrics EM-2107A.

Întrucât mostrele testate au avut grosimi diferite, a fost necesară realizarea unei calibrări individuale pentru fiecare mostră în parte. Măsurătorile au fost realizate în domeniul de frecvențe 30MHz – 1.5GHz, semnalul generat fiind de -10dBm. Rezultatele sunt prezentate în figura 5.

Fig. 5. Eficiența de ecranare în domeniul 30MHz-1.5GHz

Analiza și interpretarea rezultatelor, definirea configurației optime a tipologiei de tricotare

Centralizarea datelor referitoare la timpul de descărcare

Datele obținute în urma testelor de evaluare a timpului de descărcare electrostatică au fost centralizate pe baza următorilor indicatori:

- U_{inițial} = tensiune de încărcare (5kV și 3kV)
- t_{1/2} = timp de înjumătățire
- t_{1/e} = timp 37%
- U_{final} = tensiune remanenta după 125 ms de la declanșarea descărcării
- U_{final}/U_{inițial} = raportul dintre tensiunea remanentă după 125 ms de la declanşarea descărcării și tensiunea inițială la care a fost încărcată mostra.

Mostra	t _{1/2} (M)	t _{1/2} (f)	t _{1/e} (M)	t _{1/e} (f)	U _{final} (M)	U _{final} (f)	U _{final} /U _{initial} (M)	U _{final} /U _{initial} (f)
P1X1 5kV+	0.055	0.043	-	0.0795	1880	1560	37.3	31.2
P1X1 5kV-	0.0426	0.0302	0.0732	0.0449	-1400	-680	28.93	14.53
P1X1 3kV+	0.0635	0.034	-	0.0503	1260	540	41.72	18
P1X1 3kV-	0.0482	0.0322	0.0927	0.0498	-1040	-500	34.44	17.73
G 5kV+	0.0986	0.0459	-	0.0853	2400	1640	48	32.54
G 5kV-	0.0357	0.0319	0.0543	0.0492	-1040	-880	20.63	17.6
G 3kV+	0.0494	0.0312	0.0969	0.048	1040	520	34.44	17.11
G 3kV-	0.0504	0.0304	0.0918	0.0459	-1000	-520	33.33	17.33
MR 5kV+	0.0441	0.0312	0.081	0.047	1600	800	31.01	17.09
MR 5kV-	0.0471	0.0285	0.0865	0.0427	-1560	-600	31.2	12
MR 3kV+	0.0589	0.033	-	0.0513	1140	600	38	19.87
MR 3kV-	0.0435	0.0288	0.0766	0.0423	-920	-380	30.67	13.38
SF 5kV+	0.0678	0.0293	-	0.0435	2200	520	43.31	10.24
SF 5kV-	0.0653	0.0344	-	0.056	-2120	-1080	42.06	21.6
SF 3kV+	0.0592	0.0296	-	0.0466	1140	500	38	16.78
SF 3kV-	0.0699	0.0359	-	0.058	-1300	-720	43.62	23.68
T 5kV+	0.0665	0.031	-	0.0459	2080	760	41.94	15.83
T 5kV-	0.051	0.036	0.0959	0.052	-1680	-880	33.87	17.74
T 3kV+	0.0951	0.034	-	0.0553	1440	680	47.37	22.52
T 3kV-	0.0755	0.0348	-	0.0515	-1320	-560	44.3	18.67
V1R 5kV+	0.079	0.0366	-	0.0588	2160	1200	44.26	24.39
V1R 5kV-	0.0702	0.0323	-	0.0503	-2080	-920	42.98	18.11
V1R 3kV+	0.064	0.0309	-	0.0482	1220	560	40.67	18.54
V1R 3kV-	0.0574	0.0321	-	0.0509	-1160	-560	38.93	18.79

GR 5kV+	0.0479	0.0365	0.1032	0.056	1720	1120	34.4	22.22
GR 5kV-	0.0588	0.0401	-	0.0646	-1880	-1320	38.21	26.61
GR 3kV+	0.0678	0.0367	-	0.0592	1240	760	41.33	25.33
GR 3kV-	0.0467	0.0328	0.0888	0.0509	-960	-600	32.65	20
PRV 5kV+	-	0.0389	-	0.064	3040	1360	60.32	26.56
PRV 5kV-	0.0388	0.0366	0.064	0.0596	-1280	-1120	27.35	23.53
PRV 3kV+	0.1147	0.0376	-	0.0631	1500	780	49.67	25.66
PRV 3kV-	0.09	0.0362	-	0.0626	-1400	-760	46.67	25.5
P3 5kV+	0.0473	0.0331	0.0881	0.051	1520	1040	31.93	20.63
P3 5kV-	0.057	0.0349	-	0.0563	-1840	-1160	38.33	22.83
P3 3kV+	0.0567	0.0346	-	0.0545	1100	660	37.67	21.57
P3 3kV-	0.0579	0.0329	-	0.0512	-1120	-600	38.62	19.74

Testarea mostrelor la încărcarea la tensiune pozitivă de 5kV față de masă cu extremitatea mostrei conectată la electrodul de descărcare.

Evidențiere: MR, GR, P3

Testarea mostrelor la încărcarea la tensiune pozitivă de 5kV față de masă cu firul conductiv conectat la electrodul de descărcare.

Evidențiere: MR, SF, T, P3, GR, V1R

Evidențiere: P1x1, G, MR, T, PVR

Testarea mostrelor la încărcarea la tensiune negativă de 5kV față de masă cu firul conductiv conectat la electrodul de descărcare.

Evidențiere: P1x1, G, MR, T, V1R

Testarea mostrelor la încărcarea la tensiune pozitivă de 3kV față de masă cu extremitatea mostrei conectată la electrodul de descărcare.

Evidențiere: G

Testarea mostrelor la încărcarea la tensiune pozitivă de 3kV față de masă cu firul conductiv conectat la electrodul de descărcare.

Evidențiere: P1x1, G, MR, SF, V1R

Testarea mostrelor la încărcarea la tensiune negativă de 3kV față de masă cu extremitatea mostrei conectată la electrodul de descărcare.

Evidențiere: P1x1, G, MR, GR

Testarea mostrelor la încărcarea la tensiune negativă de 3kV față de masă cu firul conductiv conectat la electrodul de descărcare.

Evidențiere: P1x1, G, MR, T, V1R, GR, P3

Centralizarea evidențierilor

Nr.	Tip testare	Evidențiere	MR	GR	Р3	SF	Т	V1R	P1x1	G	PVR
crt.											
1	5kV+M	MR, GR, P3	х	х	х						
2	5kV+f	MR, SF, T, P3,	х	х	х	х	х	х			
		GR <i>,</i> V1R									
3	5kV-M	P1x1, G, MR, T,	х				х		х	х	х
		PVR									
4	5kV-f	P1x1, G, MR, T,	х				х	х	х	х	
		V1R									
5	3kV+M	G								х	
6	3kV+f	P1x1, G, MR, SF,	х			х		х	х	х	
		V1R									
7	3kV-M	P1x1, G, MR, GR	х						х	х	
8	3kV-f	P1x1, G, MR, T,	х		х		х	х	х	х	
		V1R, GR, P3									
	Total evi	dențieri	7	2	3	2	4	4	5	6	1

Centralizarea datelor referitoare la rezistivitatea electrică de suprafață

Nr. crt.	1	2	3	4	5	6	7	8	9
Cod Mostra	PRV	GR	P3	P1x1	G	MR	SF	Т	V1R
Rezistivitate suprafață *10 ¹⁸ [Ω]	1.32	1.4	1.4	1.3	1.36	1.5	1.45	1.42	1.4

Centralizarea datelor referitoare la caracterizarea dielectrică

Parametrii de caracterizare dielectrică au o variație similară pentru toate cele 9 mostre indicând un comportament specific izolatoarelor. Variația frecvenței în întreaga gamă nu relevă prezența polarizării la nivelul mostrelor.

Centralizarea datelor referitoare la eficiența de ecranare

În urma centralizării datelor aferente celor 9 mostre se constată, referitor la eficiența de ecranare, următoarele (figura 6):

- eficiență de ecranare de aproximativ 6-7 dBm în gama de frecvența 400MHz-1.5GHz
- eficiență de ecranare de aproximativ 15 dBm în gama de frecvența 200MHz-400MHz
- eficiență de ecranare de aproximativ 20 dBm în gama de frecvența 30MHz-200MHz
- eficiența de ecranare cea mai bună pentru întreaga gamă este obținută de mostra cu tipologia de tricotare GR

Fig. 6. Centralizarea eficiențelor de ecranare în domeniul 30MHz-1.5GHz

Concluzii finale:

Utilizarea firelor cu inimă conductoare permite obținerea a 2 caracteristici importante, în concordanță cu obiectivul central al proiectului:

- Conferirea pentru exteriorului mostrelor tricotate a unor proprietăți specifice izolatoarelor, care să nu faciliteze migrația sarcinilor acumulate;
- Conferirea unui canal de migrație al sarcinilor prin inima conductoare.

Testele referitoare la caracterizarea dielectrică și cele referitoare la rezistivitatea electrică de suprafață relevă un caracter specific materialelor izolatoare pentru toate cele 9 mostre.

Testele referitoare la capacitatea de drenare a sarcinilor acumulate, bazate pe timpul de descărcare stabilesc drept tipologii de tricotare optime **MR, G și P1x1,** care vor fi utilizate în realizarea modelului experimental, în etapa următoare.