MULTIPLEXERS

Multiplexers are combinational logic circuits that switch the data from oneof its input to a unique output. The input is selected through an address word.

1. 2 to 1 multiplexer

The circuit allows switching the data from the input $\mathrm{I}_{0}(\mathrm{~A}=0)$ or I_{1} $(\mathrm{A}=1)$ toward the output Y . The circuit symbol and its truth table are presented in figure 1.

\mathbf{A}	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{0}}$	\mathbf{Y}
0	X	0	0
0	X	1	1
1	$\mathrm{Y}=\mathrm{I}_{0}$		
1	0	X	0
$\mathrm{Y}=\mathrm{I}_{1}$			
	1	X	1

Figure 1
The correspondingVK diagram is shown below. By grouping the cells that contain logic 1 we get the equation:

A	$\mathrm{I}_{1} \mathrm{I}_{0}$	00	01	11
0	0	0	1	1
0	0	1	1	0
1				

$$
Y=\bar{A} \cdot I_{0}+A \cdot I_{1}
$$

From this equation, the multiplexer will look like in figure 2:

Figure 2

LAB no. 6.

2. 4:1 multiplexer with enable input

For addressing 4 inputs, 2 address lines are necessary. Their selection is similar with the one in the address decoder. The circuit has an additional input for enabling its operation.

The circuit symbol and its truth table are presented in figure 3.

Figura 3
The VK diagram associated with this circuit is the following:

$\mathrm{EA}_{1} \mathrm{~A}_{0} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	0000	0001	0011	0010	0110	0111	0101	0100	1100	1101	1111	1110	1010	1011	1001	1000
000	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
001	0	0	1	1	1	1	0	0	0	0	T	1	1	1	0	0
011	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
010	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
111	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$$
\begin{aligned}
& Y=\bar{E} \cdot \overline{A_{1}} \cdot \overline{A_{0}} \cdot I_{0} \cdot\left(\overline{I_{2}} \cdot \overline{I_{3}}+\overline{I_{3}} \cdot I_{2}+I_{3} \cdot I_{2}+I_{3} \cdot \overline{I_{2}}\right)+ \\
&+\bar{E} \cdot \overline{A_{1}} \cdot A_{0} \cdot I_{1} \cdot\left(\overline{I_{3}}+I_{3}\right)+\bar{E} \cdot A_{1} \cdot \overline{A_{0}} \cdot I_{2}+\bar{E} \cdot A_{1} \cdot A_{0} \cdot I_{3}= \\
&=\bar{E} \cdot\left(\overline{A_{1}} \cdot \overline{A_{0}} \cdot I_{0}+\overline{A_{1}} \cdot A_{0} \cdot I_{1}+A_{1} \cdot \overline{A_{0}} \cdot I_{2}+A_{1} \cdot A_{0} \cdot I_{3}\right)
\end{aligned}
$$

The synthesis needs : - 1 OR gate with 4 inputs

- 4 AND gates with 4 inputs
- 3 inverters

Figure 4

3. Implementation of logic functions using multiplexers

Any logic function can be written as a sum of miniterms:

$$
\begin{equation*}
f=\sum_{i=0}^{2^{n}-1} m_{i} \cdot k_{i} \tag{1}
\end{equation*}
$$

where: $-\mathrm{k}_{\mathrm{i}}=0$ if the miniterm does not appear in the disjunction
$-k_{i}=1$ if the miniterm appears in the disjunction
The generalized equation of a multiplexer is:

$$
\begin{equation*}
Y=\bar{E} \cdot \sum_{i=0}^{2^{n}-1} m_{i} \cdot I_{i} \tag{2}
\end{equation*}
$$

Comparing the equations (1) and (2) we can conclude that any logic function can be implemented using a multiplexer by connecting the input \bar{E} to logic 0 and the inputs I_{i} to logic 1 respectively to logic 0 if the miniterm appears in function or not.

Example:

Considerring the function

$$
f=\bar{A} \cdot B \cdot C+A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}
$$

it can be rewritten:

$$
\begin{aligned}
f & =\underbrace{\bar{A} \cdot \bar{B} \cdot \bar{C}}_{I_{0}} \cdot 0+\underbrace{A \cdot \bar{B} \cdot \bar{C}}_{I_{1}} \cdot 0+\underbrace{\bar{A} \cdot B \cdot \bar{C}}_{I_{2}} \cdot 0+\underbrace{A \cdot B \cdot \bar{C}}_{I_{3}}+ \\
& +\underbrace{\bar{A} \cdot \bar{B} \cdot C}_{I_{4}} \cdot 0+\underbrace{A \cdot \bar{B} \cdot C}_{I_{5}}+\underbrace{\bar{A} \cdot B \cdot C}_{I_{6}}+\underbrace{A \cdot B \cdot C}_{I_{7}} \cdot 0
\end{aligned}
$$

LAB no. 6.
The function implementation can be done like below:

Figure 5

4. Lab works

Complete the following sheet according to the indications.

LAB SHEET

1. Make the $2: 1$ multiplexer schematic in MaxPlus II (figure 2). Simulate it and draw the output waveform on the grid below. Compare the resulted data with the truth table.

2. Make the $4: 1$ multiplexer in MaxPlusII (figure 4). Simulate and draw the output waveform $E=0$. Find the delay time and mark the logic values on the waveforms. Compare the results with the truth table.

