LabVIEW™ Basics | Introduction
Course Manual

Course Software Version 8.0
May 2006 Edition
Part Number 320628P-01

Copyright

© 1993-2006 National Instruments Corporation. All rights reserved.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent
of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by
copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to
others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable
license or other legal restriction.

In regards to components used in USI (Xerces C++, ICU, and HDF5), the following copyrights apply. For a listing of the conditions and
disclaimers, refer to the UsICopyrights. chm.

This product includes software developed by the Apache Software Foundation (http: /www.apache.org/).
Copyright © 1999 The Apache Software Foundation. All rights reserved.

Copyright © 1995-2003 International Business Machines Corporation and others. All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of lllinois. All rights reserved.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section

onni.com/legal for more information about National Instruments trademarks.
FireWire® is the registered trademark of Apple Computer, Inc. Other product and company names mentioned herein are trademarks
or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have
no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software,

the patents. txt file on your CD, or ni.com/legal /patents.

Worldwide Technical Support and Product Information
ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599, Canada 800 433 3488,
China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11,

France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 41190000, Israel 972 0 3 6393737, Italy 39 02 413091,
Japan 81 3 5472 2970, Korea 82 02 3451 3400, Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793,
Netherlands 31 0 348 433 466, New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150,

Portugal 351 210 311 210, Russia 7 095 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 4200,

South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51,

Taiwan 886 02 2377 2222, Thailand 662 278 6777, United Kingdom 44 0 1635 523545

For further support information, refer to the Additional Information and Resources appendix. To comment on National Instruments
documentation, refer to the National Instruments Web site at ni . com/ info and enter the info code feedback.

Contents

Student Guide
A. About This Manualccccoiiiiiiiiiiiiiiecece e viii
B. What You Need to Get Startedcc.eeeeeeiiieeeiiiiee e viil
C. Installing the Course SOftWare.........ccocueeeriiieriiieniieeeieeeite et X
D. CoUISE GOAISeiiuiiiiiiiiieiiee ettt ix
E. Course CONVENTIONSccccuviiieeiiiiieeiiiieeeeiiteeeesieeeeeesteeeeessnbreeeesnsaeesssnsseeesssnsseeens X

Lesson 1

Problem Solving
A. Software Development Methodc.cooviiiiiiiiniiiiniieiiececceeeeeee e 1-2
B SCENATIO .. 1-2
G DBSIZN ..ttt sttt et e s 1-3
D. IMplementationcocuuieeiiiieriiieenieeeiie ettt et et ee et e e st esbeeesbeeesbeeenabee e 1-6
E. TESHNE ..eeeiieeeitie ettt ettt et e et e et ee et e e e et e e esabeesbbeesnbeeesnbaeeas 1-6
F. MAINTENANCEeiiiiiiiieeiiiiee et et ee ettt e e st e e e ettt eeesabeeeessaaaeeesnnsaeeeannsseeeens 1-7
Exercise 1-1 Software Development Method............ccceevviiiniiiiniiiiniiiiicenieene 1-8
G. COUTSE PIOJECT...ceiiiiiiiiieiiieeeeeete ettt ettt sttt et e et e e e e e 1-10

Lesson 2

Navigating LabVIEW
A. Virtual Instruments (VIS)oovv e 2-2
B. Parts of @ VI ...oooi e 2-2
C. Starting @ Voot ettt st st 2-4
D. Project EXPIOTETcoooiiiiiiiiiiiiiiieeereeeee e 29
E. Front Panel Windowcccccoiiiiiiiiiiiiiceeecseeeee et 2-13
F. Block Diagram WIndOWcccoeoiiiiiiiiiiiiiniieeniieesee et 2-19
Exercise 2-1 Concept: Exploring a VI.......ccccooiiiiiiiiiiiiieeeeeeeeeee 2-28
G. Searching for Controls, VIs, and Functions..........cccccceevveeeniiiiniiennieeniieenieeeee, 2-29
Exercise 2-2 Concept: Navigating Palettesccceevvueeeriiieiniieniiieeiieeeieeeieeene 2-31
H. Selecting @ TOOLoooiiiiiiiiiieeee et 2-32
Exercise 2-3 Concept: Selecting a ToOlcoocueveviiiiiiiiniiieiiiieeeeecee e 2-39
Lo Data FIOW ..ottt ettt 2-43
Exercise 2-4 Concept: Data FIOWccooiiiiiiiiiiiiiiiieceeeeeeeee 2-45
J. Building a SImple VI ... 2-46
Exercise 2-5 Simple AAP V...t 2-50

Lesson 3

Troubleshooting and Debugging Vls
A. LabVIEW Help ULHIHESeoeiiiiiiiiiiiiieieeeeeeeeeeeee ettt 3-2
Exercise 3-1 Concept: USINg Help ...cccveeeiiiiiiiiiiiiiieieeieeeeee e 3-5
B. Correcting BroKen VIS.......cooiiiiiiiiiiieieeeee et 39
C. Debugging TEChNIQUESeoeiuiiiiiiiiiiiieiieeteeee ettt 3-11

© National Instruments Corporation fii LabVIEW Introduction Course Manual

Contents

D. Undefined or Unexpected Data............cooviiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeieee 3-18
E. Error Checking and Error Handling.............coccooviiiiiiiiiiincececee 3-19
Exercise 3-2 Concept: DebUZ@INgcevviiiiiiiiiniiieeiieeeieeite e 3-21

Lesson 4

Implementing a Vi
A. Designing Front Panel Windowscoociiiiiiiiiiiiiniiiiiiiieeieceeeeeeeesieeee 4-2
B. LabVIEW Data TYPEScoooviiiiiiiiiiieieeiieeeeceeeeeseeertesee et 4-9
C. Documenting COAEccocuieiriiiiniieeiieeeite ettt stee et e et eesitee st e e sbeeesabeee e 4-17
Exercise 4-1 Determine Warnings VIccoooiiiiiiiiiiiiiececeeceee 4-20
D. Wil LOOPS ..ttt ettt 4-27
Exercise 4-2 Auto Match V..., 4-30
B FOT LLOODS ..ttt ettt ettt ettt et ettt ens 4-36
Exercise 4-3 Concept: While Loops versus For LOOpscccocceevviiiiiniiniieenneenne 4-39
Fo TIMING @ Voot et et st 4-42
G. Tterative Data Transfer.........coooeoiiiiiiiiiiie e 4-43
Exercise 4-4 Average Temperature VI.........coocoiiiiiiiiiiiiiiiiniiieceicceeeceeeee 4-46
H. PIOtNG DAtacoooiiiiiiiiieiie ettt et e e e e 4-50
Exercise 4-5 Temperature Multiplot VI ..., 4-56
L. CASE SIIUCTUIES ...eoueiiiiiieiiieite sttt ettt sttt e be e st e be e sabeebeesaeeens 4-61
Exercise 4-6 Determine Warnings VIccocceiviiiiiiiiniiiienieeeee e 4-67
J. FOrmula NOAES....couviiiiiiiiieeee et 4-72
Exercise 4-7 Self-Study: Square Root VI.........cociiiiiiiiiiiiiiiieceeeeeee 4-74
Exercise 4-8 Self-Study: Determine Warnings VI (Challenge)cccocveernennne 4-78
Exercise 4-9 Self-Study: Determine More Warnings VI........c..ccccoviniinininncnnn. 4-81

Lesson 5

Relating Data
Al ATTAYS ettt ettt e et e et e e bt e e e bt e e abeeenabeeeaa 5-2
Exercise 5-1 Concept: Manipulating ATTaysccceevveeerieeniuieeniieeenieesieeesneeenns 5-7
Bl CTUSTETS ettt ettt e st e st e st e e sbe e e sabeee e 5-14
Exercise 5-2 Concept: CIUSLETS. ...cccuiiiiiiiiiiiiiieeeiteeete ettt 5-20
C. Type DefiNItiONScoeiuiiiiiiieiiiieiiee ettt ettt st e st et e e sibee e 5-25
Exercise 5-3 Type Definitioncccceceeiiiiiiiiniiniiiinicieececieeeceeeeeeee e 5-29

Lesson 6

Storing Measurement Data
A. Understanding File I/Occoooiiiiiiiiie et 6-2
B. Understanding High-Level File I/O........c.ccccooiiiiiiiiiniiiieeceeee e 6-4
Exercise 6-1 Spreadsheet Example VIcoocooiiiiiiiiiiieeeeee 6-5
C. LoW-Level File IOooiii et 6-8
Exercise 6-2 Temperature Log VI.......cccooviiiiiiiiniiiieeeeceeeeeee e 6-10
Exercise 6-3 Self-Study: Read VCard VI........ccoooiiiiiiiiiiiiiceeeiee 6-13

LabVIEW Introduction Course Manual iv ni.com

Contents

Lesson 7

Developing Modular Applications
A. Understanding MOAUIATILYcoooieeiiiiniiieniieeiieeiee e 7-2
B. Building the Icon and Connector Panecccccceeiiiiiiiiiniiiniiiiniiceceeeee 7-4
C. USING SUDVIS .o 7-9
Exercise 7-1 Determine Warnings VIccocccoiviiiiiiiiniiiineieeee e 7-11

Lesson 8

Acquiring Data
AL USING HardWAreoooiiiiiiiiiiiiiieeteeteee ettt 8-2
B. Communicating with Hardware............ccocccoiiiiiiiiiiiiicceceeeceee 8-5
C. Simulating @ DAQ DE@VICE ...cccuviiiiiieiiiiiiiieeiteeeite ettt e 8-8
Exercise 8-1 Concept: MAX ..ot 8-9
D. Measuring Analog INPULcoooiiiiiiiiiiiiieeeteeeeee et 8-15
Exercise 8-2 Triggered Analog Input VI........cccooiiiiiiiiiiiieee e 8-17
E. Generating Analog OULPUL.........coiiuiiiiiiiiiiiieiiieeeieeeee ettt 8-22
F. USING COUNLETS ..eouiiiiiiiieiiieeiiee ettt ettt et ettt e et e s ateesbeeenane 8-24
Exercise 8-3 Count Events VI ..., 8-25
G. UsIng DIigital /O ...coouiiiiiiiiiie et s 8-28
Exercise 8-4 Optional: Digital Count VI ..o 8-29

Lesson 9

Instrument Control
A. Using Instrument CONIOLcooviiiiiiiiiiiiieiiie et 9-2
B. USING GPIB ...t 9-2
C. Using Serial Port COmmunICatioNccceeeuieriiriiienieeiienee e 9-3
D. Using Other INterfacesccovuiieiiiiiiieiiieeiieeeite et 9-6
E. Software ArChiteCtUrecoouiiiiiiiiiiiiiiiiee et 9-7
Exercise 9-1 Concept: GPIB Configuration with MAXcccccceniininiininnennen. 9-9
F. Using the Instrument I/O ASSIStANT........cccuvieriiieiriieeiiieeieeeieeeeiee et 9-12
Exercise 9-2 Concept: Instrument I/O ASSIStANToocveevieeiiiinieniiiiieniccieeneeee 9-14
G. UsSING VISA .. et 9-23
Exercise 9-3 VISA Write & Read VI ..., 9-26
H. Using InStrument DITVETS.......cccooiiiiiiiiiiiiiiieieciicecneeceesee e 9-29
Exercise 9-4 Concept: NI Devsim V... 9-32

Lesson 10

Common Design Techniques and Patterns
A. Using Sequential Programmingccecveeviieeniieeniienieeeieeeieeeeieee e 10-2
B. Using State Programmingccocceeeiieiiiiiiniiiieniieeieeeeeeeeeitee st 10-5
C. State MAaCRINEScoueiiiiiiiiiieeeeeee ettt e 10-6
Exercise 10-1 State Machine V1. 10-15
D. Using ParalleliSmc.cooiiiiiiiiiiieiieeeeeeeeeeee ettt 10-21

© National Instruments Corporation v LabVIEW Introduction Course Manual

Contents

Appendix A

Analyzing and Processing Numeric Data
A. Choosing the Correct Method for Analysisccceeveveeriiiiniieennieenieenee e A-2
B. ANalysiS Cat@ZOTIES ..c.u.veieuiiiiiiiiiiieeeiiee ettt ettt ettt e sbee e st eeenree e A-4
Exercise A-1 Concept: Analysis TYPESccccueiiriiiiniieiiiiiniieeeiieereee et A-6

Appendix B

Measurement Fundamentals
A. Using Computer-Based Measurement SYStemS............eeeeuveerueeiriieeinieenneeennieeenns B-2
B. Understanding Measurement CONCEPLSccovureerriieeriiieeniiieeniieenieeesiieeeiiee e B-3
C. Increasing Measurement QUAlityccoooueiiiiiiiiiiiniieiniieenteeeceee e B-12
Exercise B-1 Concepts: Measurement Fundamentals..........c.ccccoeeeeeviiiiniiennienn. B-17

Appendix C

CAN: Controller Area Network
AL HIStOTY Of CAN ...ttt sttt st ens C-2
B. CAN BaSICS..eiiuiiiiiiiiieiteeetee ettt ettt ettt st C-4
Exercise C-1 Concept: CAN Device SEetUP.....cccueerruiieriuieiniiieiiiieniieesieeesiee e C-7
C. Channel ConfigUration...........ccceeierierienirnienienieeieneenteete ettt C-9
Exercise C-2 Channel Configurationcoceeveeeriienieeiienieeieeseeeee e C-12
D. CAN APIS oo C-17
E. CAN Programming in LabVIEW (Channel API)........cccccccoiiiiiiiiniiiiiieens C-18
Exercise C-3 Read and Write CAN Channels..........ccocceeviiiiniiiiniiiniciniieciiees C-21
Exercise C-4 Synchronize CAN & DAQcooiiiriiiiiiiiiiieeeeeeeeete e C-26

Appendix D

Additional Information and Resources
Index

Course Evaluation

LabVIEW Introduction Course Manual vi ni.com

Student Guide

Thank you for purchasing the LabVIEW Basics I: Introduction course Kit.
You can begin developing an application soon after you complete the
exercises in this manual. This course manual and the accompanying
software are used in the three-day, hands-on LabVIEW Basics I:
Introduction course.

You can apply the full purchase of this course kit toward the corresponding
course registration fee if you register within 90 days of purchasing the Kkit.
Visit ni.com/training for online course schedules, syllabi, training
centers, and class registration.

Note
info code rdlvce.

5

For course manual updates and corrections, refer to ni.com/info and enter the

The LabVIEW Basics I: Introduction course is part of a series of courses
designed to build your proficiency with LabVIEW and help you prepare for
NI LabVIEW certification exams. The following illustration shows the
courses that are part of the LabVIEW training series. Refer to
ni.com/training for more information about NI Certification.

Courses

New User

Experienced User

Advanced User

LabVIEW Basics I*

RN

LabVIEW Intermediate I*

Begin
Here

LabVIEW Basics II*

-

LabVIEW Intermediate II*

LabVIEW Advanced
Application Development

Skills learned: Skills learned: Skills learned:
¢ LabVIEW environment * Modular application development e Large application design
navigation e Structured design and * Code reuse maximization

¢ Basic application creation
using LabVIEW

Certifications

development practices
* Memory management and VI |
performance improvement '

* Object-oriented programming
in LabVIEW

Certified LabVIEW
Associate Developer Exam

B

Certified LabVIEW
Developer Exam

)

Certified LabVIEW
Architect Exam

Skills tested: Skills tested: Skills tested:
¢ LabVIEW environment e LabVIEW application e LabVIEW application
knowledge development expertise development mastery

Hardware-Based Courses:

* Data Acquisition and Signal Conditioning * Modular Instruments e Instrument Control ¢ Machine Vision
* Motion Control *LabVIEW Real-Time

*Core courses are strongly recommended to realize maximum productivity gains when using LabVIEW.

© National Instruments Corporation

vii

LabVIEW Introduction Course Manual

Student Guide

A. About This Manual

Use this manual to learn about LabVIEW programming concepts,
techniques, features, VIs, and functions you can use to create test

and measurement, data acquisition, instrument control, datalogging,
measurement analysis, and report generation applications. This course
manual assumes that you are familiar with Windows and that you have
experience writing algorithms in the form of flowcharts or block diagrams.

The course manual is divided into lessons, each covering a topic or a set
of topics. Each lesson consists of the following:

* An introduction that describes the purpose of the lesson and what
you will learn

* A description of the topics in the lesson
* A set of exercises to reinforce those topics

Some lessons include optional and challenge exercise sections or a set
of additional exercises to complete if time permits.

* A summary that outlines important concepts and skills taught in
the lesson

Several exercises in this manual use one of the following National
Instruments hardware products:

* A plug-in multifunction data acquisition (DAQ) device connected to
a DAQ Signal Accessory containing a temperature sensor, function
generator, and LEDs

¢ A GPIB interface connected to an NI Instrument Simulator

If you do not have this hardware, you still can complete the exercises.
Alternate instructions are provided for completing the exercises without
hardware. Exercises that explicitly require hardware are indicated with an
icon, shown at left. You also can substitute other hardware for those
previously mentioned. For example, you can use a GPIB instrument in place
of the NI Instrument Simulator, or another National Instruments DAQ
device connected to a signal source, such as a function generator.

B. What You Need to Get Started

Before you use this course manual, ensure you have all the following items:

Q Windows 2000 or later installed on your computer. The course is
optimized for Windows XP.

Q Multifunction DAQ device configured as device 1 using
Measurement & Automation Explorer (MAX)

LabVIEW Introduction Course Manual viii ni.com

Student Guide

DAQ Signal Accessory, wires, and cable

GPIB interface

NI Instrument Simulator and power supply

LabVIEW Full or Professional Development System 8.0 or later
A serial cable

A GPIB cable

o U J J U o o

LabVIEW Basics I: Introduction course CD, which installs the
following folders:

Filename Description

Exercises Folder for saving VIs created during the course and
for completing certain course exercises; also
includes subVIs necessary for some exercises and
zip file (nidevsim. zip) containing the LabVIEW
instrument driver for the NI Instrument Simulator

Solutions Folder containing the solutions to all the course
exercises

C. Installing the Course Software

Complete the following steps to install the course software.

1. Insert the course CD in your computer. The LabVIEW Basics Course
Material Setup dialog box displays.

2. Click the Next button.

3. Choose Typical in the setup type and click the Install button to begin
the installation.

4. Click the Finish button to exit the Setup Wizard.

The installer places the Exercises and Solutions folders at the top
level of the C: directory.

D. Course Goals

This course prepares you to do the following:
* Understand front panels, block diagrams, icons, and connector panes
* Use the programming structures and data types that exist in LabVIEW

* Use various editing and debugging techniques

© National Instruments Corporation ix LabVIEW Introduction Course Manual

Student Guide

* Create and save VIs so you can use them as subVIs
* Display and log data
* Create applications that use plug-in DAQ devices

* Create applications that use serial port and GPIB instruments

This course does not describe the following:

* Every built-in VI, function, or object; refer to the LabVIEW Help for
more information about LabVIEW features not described in this course

* Analog-to-digital (A/D) theory
* Operation of the serial port

* Operation of the GPIB bus

* Developing an instrument driver

* Developing a complete application for any student in the class; refer to
the NI Example Finder, available by selecting Help»Find Examples,
for example Vs you can use and incorporate into VIs you create

E. Course Conventions

»

T bae

bold

italic

The following conventions appear in this course manual:

The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»QOptions directs you to pull
down the File menu, select the Page Setup item, and select Options from
the last dialog box.

This icon denotes a tip, which alerts you to advisory information.
This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

This icon indicates that an exercise requires a plug-in GPIB interface or
DAQ device.

Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names,
controls and buttons on the front panel, dialog boxes, sections of dialog
boxes, menu names, and palette names.

Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

LabVIEW Introduction Course Manual X ni.com

Student Guide

monospace Text in this font denotes text or characters that you enter from the keyboard,
sections of code, programming examples, and syntax examples. This font
also is used for the proper names of disk drives, paths, directories, programs,
subprograms, subroutines, device names, functions, operations, variables,
filenames, and extensions.

monospace bold Text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

© National Instruments Corporation Xi LabVIEW Introduction Course Manual

Problem Solving

LabVIEW is a programming language you can use to solve various
problems. Problem-solving skills are essential to creating solutions in
LabVIEW. Computer programmers use a software development method to
solve problems using software programs. Following a method helps a
programmer to develop code that has greater potential to successfully solve
a given problem as compared to writing code without a plan. A method also
helps to make code more readable, scalable, and modifiable.

You will use the strategy described in this lesson to solve problem
throughout the course.

Topics

Software Development Method
Scenario

Design

Implementation

Testing

Maintenance

OTmEo 0w

Course Project

© National Instruments Corporation 1-1 LabVIEW Introduction Course Manual

Lesson 1 Problem Solving

A. Software Development Method

B. Scenario

Following a set of steps that has been refined over the years by software
engineers can simplify solving problems using software. This course
describes a specific set of steps called the software development method.
The software development method is a strategy for using LabVIEW to
implement a software solution. Use the software development method to
create a solution to your problem.

In the software development method, complete the following steps:
1. Define the problem (scenario).

2. Design an algorithm and/or flowchart.

3. Implement the design.

4. Test and verify the implementation.

5

Maintain and update the implementation.

During this course, this software development method serves as a
framework for all hands-on development exercises. In most exercises, you
receive the scenario and design steps. Then you complete the
implementation, testing, and maintenance steps. During this course, you
learn to create successful implementations.

Furnace Example—A furnace example in this lesson illustrates each step
of the software development method described.

During the scenario stage of the software development method, you define
what your problem is so that you can approach it with all the necessary
factors identified. You can remove extraneous factors during this phase and
focus on the core problem that you must solve. How you identify the
problem initially can save you time while you design and implement a
solution.

Furnace Example—Assume that you must cure a material at a certain
temperature for a set amount of time in a furnace. For this problem, it is not
necessary to know the material type or the time of day. You must know the
cure time, cure temperature, and method for adjusting the furnace
temperature.

LabVIEW Introduction Course Manual 1-2 ni.com

Lesson 1 Problem Solving

C. Design

After you determine the scope of the problem, you can design a solution by
analyzing the problem. Part of analyzing the problem is identifying the
inputs and outputs of the software, as well as any additional requirements.
After you define the inputs and outputs, you can design an algorithm,
flowchart and/or state transition diagram to help you arrive at a software
solution.

Identify the Inputs

The inputs indicate the raw data that you want to process during the problem
solving process.

Furnace Example—Inputs for the furnace software are the cure time
(seconds), the necessary cure temperature (Kelvin), and the furnace
temperature (Kelvin).

Identify the Outputs

The outputs represent the result of the calculation, processing, or other
condition that the problem solving process implements.

Furnace Example—The output of the furnace software is an on/off switch
that applies voltage to the furnace coil. Voltage is applied to the coil by
changing the state of a switch that controls the voltage supply to the coils.
When the voltage is applied or removed, the furnace has an immediate
change in temperature.

Identify Additional Requirements

Consider any other factors that might influence solving the problem. For
example, do you need to use specific units such as centimeters or seconds?

Furnace Example—As an additional requirement for this example, assume
that the furnace cannot start until the interior temperature is the same as the
exterior temperature.

Designing an Algorithm to Solve the Problem

After determining the inputs, outputs, and additional requirements, you can
create an algorithm. An algorithm is a set of steps that process your inputs
and create outputs.

Furnace Example—This algorithm describes the operation of the furnace:
1. Read exterior temperature.
2. Read interior temperature.

3. If interior temperature is not equal to exterior temperature, go to step 1.

© National Instruments Corporation 1-3 LabVIEW Introduction Course Manual

Lesson 1 Problem Solving

4. Read interior temperature.

If interior temperature is greater than desired temperature, turn off
voltage to coil.

6. If current temperature is less than or equal to desired temperature, turn
on voltage to coil.

7. If time is less than cure time, go to step 4.

Turn off voltage to coil.

Designing a Flowchart

A flowchart displays the steps for solving the problem. Flowcharts are
useful because you can follow more complex processes of an algorithm in a
visual way. For example, you can see if a specific step has two different
paths to the end solution and you can plan your code accordingly.

Furnace Example—You can design this example using either an algorithm
or a flowchart. Figure 1-1 shows a flowchart following the algorithm
designed in the previous subsection.

Start

Legend

T = Current Temperature
X = Desired Temperature
Y = Exterior Temperature
A = Current Time

B = Cure Time

Figure 1-1. Flowchart for Furnace Example

LabVIEW Introduction Course Manual 1-4 ni.com

Lesson 1 Problem Solving

Designing a State Transition Diagram

ON

State transition diagrams are a specific type of flowchart that are commonly
used when creating LabVIEW state machines. State transition diagrams
allow you to clearly indicate the states of a program and what causes the
program to transition from one state to the next. A state transition diagram
uses a labeled circle to signify a steady state and a labeled arrow to indicate
a transition from a state.

A state is a part of a program that satisfies a condition, performs an action,
or waits for an event. A transition is the condition, action, or event that
causes the program to move to the next state.

The start of the program is signified with a solid circle, shown at left.
The end of the program is signified with a targeted circle, shown at left.

Furnace Example—You also can use a state transition diagram for this
example. Figure 1-2 shows the furnace example redesigned as a state
transition diagram. Both the flowchart and the state transition diagram are
valid ways to design a VI, but each may lead to a different programming
solution.

© National Instruments Corporation 1-5 LabVIEW Introduction Course Manual

Lesson 1 Problem Solving

Legend

. T = Current Temperature
X = Desired Temperature

Y = Exterior Temperature
A = Current Time
B = Cure Time

Compare
Temperatures

Turn On
Voltage

Acquire Oven
Temperature

A>=B

Turn Off
Voltage

Figure 1-2. State Transition Diagram for Furnace Example

D. Implementation

In the implementation stage, you create code for your algorithm or
flowchart. When writing code in a text-based language, the algorithm
elegantly translates into each line of code, depending on the level of detail
shown in the algorithm. Because LabVIEW is a graphical programming
language, the flowchart works much the same way. Refer to Lesson 10,
Common Design Techniques and Patterns, for more information about
implementing LabVIEW VIs from a flowchart or state transition diagram.

E. Testing

Testing and verifying is an important part of the software development
method. Make sure to test your implementation with data that is both logical
and illogical for the solution you created. Testing logical data verifies that
the inputs produce the expected result. By testing illogical data, you can test
to see if the code has effective error handling.

LabVIEW Introduction Course Manual 1-6 ni.com

Lesson 1 Problem Solving

Furnace Example—To test the error handling strategy of the furnace
example, you could input a cure temperature that is less than the ambient
temperature. An effective error handling strategy could alert the user that the
furnace can only increase temperature, not decrease it.

F. Maintenance

Maintenance is the ongoing process of resolving programming errors and
adding parallel construction changes to the original solution for a problem.

Furnace Example—After writing this code, you may discover that the
customer wants to add a temperature sensor to another area of the oven to
add redundancy to the system. Adding features to the program is easier if
you plan for scalability in your software from the beginning.

© National Instruments Corporation 1-7 LabVIEW Introduction Course Manual

Lesson 1 Problem Solving

Exercise 1-1 Software Development Method

Goal
Solve a problem using the software development method without using
software.

Scenario
You are responsible for displaying the time until arrival for airplanes at an
airport. You receive this information in seconds, but must display it as a
combination of hours/minutes/seconds.

Design

What inputs are you given?

What outputs are you expected to produce?

What is the relationship/conversion between the inputs and outputs?

@ Tip Use the Windows calculator to help you determine the relationship.

Create an algorithm or flowchart that demonstrates the relationship between
the inputs and outputs.

LabVIEW Introduction Course Manual 1-8 ni.com

Lesson 1 Problem Solving

Implementation

During this stage, you implement the program from the algorithm or
flowchart. For this exercise, skip this stage. Refer to Exercise 2-1 to see an
implementation of a solution to this problem.

Testing

Use a set of known values to test the algorithm or flowchart you designed.

Example inputs with corresponding outputs:

Input Output

0 seconds 0 hours, 0 minutes, O seconds
60 seconds 0 hours, 1 minute, O seconds
3600 seconds 1 hour, O minutes, 0 seconds
3665 seconds 1 hour, 1 minute, 5 seconds

Maintenance

If a test value set has failed, return to the design phase and check for errors.

End of Exercise 1-1

© National Instruments Corporation 1-9 LabVIEW Introduction Course Manual

Lesson 1 Problem Solving

G. Course Project

Throughout this course, the course project illustrates concepts, both as
hands-on exercises and as a case study. The project meets the following

requirements:

1. Acquires a temperature every half a second

2. Analyzes each temperature to determine if the temperature is too high or
too low

3. Alerts the user if there is a danger of heat stroke or freeze

4. Displays the data to the user

5. Logs the data if a warning occurs

6. If the user does not stop the program, the entire process repeats

The course project has the following inputs and outputs.

Inputs

Outputs

Current Temperature (T)
High Temperature Limit (X)
Low Temperature Limit (Y)

Stop

Warning Levels: Heatstroke Warning, No Warning, Freeze Warning
Current Temperature Display

Data Log File

One state transition diagram, shown in Figure 1-3, is chosen so that all
students may follow the same instruction set. This state transition diagram
is chosen because it successfully solves the problem and it has parts that can
be effectively used to demonstrate course concepts. However, it may not be
the best solution to the problem.

LabVIEW Introduction Course Manual

1-10 ni.com

Lesson 1 Problem Solving

Time Elapsed = TRUE
and
Stop = FALSE

Warning = TRUE

Datalog

Time Elapsed = FALSE
and
Stop = FALSE

/

Warning = FALSE

Stop = TRUE

Figure 1-3. Project State Transition Diagram

Figure 1-4 shows an example of an alternate state transition diagram. This
state transition diagram also solves the problem very effectively. One of the
major differences between these two diagrams is how they can be expanded
for future functionality. In the state transition diagram in Figure 1-3, you can
modify the diagram to include warning states for other physical phenomena,
such as wind, pressure, and humidity. In the state transition diagram in

Figure 1-4, you can add other layers of temperature warnings. The possible

future changes you expect to your program affect which diagram you
choose.

© National Instruments Corporation 1-11 LabVIEW Introduction Course Manual

Lesson 1 Problem Solving

Time Elapsed = TRUE

RN

Y<T<X?

Acquisition
Time Elapsed = FALSE

T>X?

Freeze
Warning

Heatstroke
Warning

Stop = FALSE

Stop = TRUE

Figure 1-4. Project State Transition Diagram Alternate

LabVIEW Introduction Course Manual 1-12

ni.com

Lesson 1 Problem Solving

Self-Review: Quiz

Match each step of the described software development method to the
correct description of the step.

1. Scenario A. Apply an algorithm or flowchart
2. Design B. Verify the VI

3. Implementation C. Define the problem

4. Testing D. Update the VI

5. Maintenance E. Identify the inputs and outputs

© National Instruments Corporation 1-13 LabVIEW Introduction Course Manual

Lesson 1 Problem Solving

Self-Review: Quiz Answers

Match each step of the described software development method to the
correct description of the step.

1 C. Scenario: Define the problem

2 E. Design: Identify the inputs and outputs

3 A. Implementation: Apply an algorithm or
flowchart

4 B. Testing: Verify the VI

5 D. Maintenance: Update the VI

© National Instruments Corporation 1-15 LabVIEW Introduction Course Manual

Lesson 1 Problem Solving

Notes

LabVIEW Introduction Course Manual 1-16 ni.com

Lesson2 Navigating LabVIEW

Navigating LabVIEW

This lesson introduces how to navigate the LabVIEW environment. This
includes using the menus, toolbars, palettes, tools, help, and common dialog
boxes of LabVIEW. You also learn how to run a VI and gain a general
understanding of a front panel and block diagram. At the end of this lesson,
you build a simple VI that acquires, analyzes, and presents data.

Topics

Virtual Instruments (VIs)

Starting a VI

Parts of a VI

Project Explorer

Front Panel Window

Block Diagram Window

Searching for Controls, VIs, and Functions
Selecting a Tool

Data Flow

~-CEZQoTmmUOW

Building a Simple VI

© National Instruments Corporation 2-1 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

A. Virtual Instruments (VIs)

LabVIEW programs are called virtual instruments, or VIs, because their
appearance and operation imitate physical instruments, such as
oscilloscopes and multimeters. LabVIEW contains a comprehensive set of
VIs and functions for acquiring, analyzing, displaying, and storing data, as
well as tools to help you troubleshoot your code.

B. Paris of a VI

LabVIEW VIs contain three main components—the front panel window, the
block diagram, and the icon/connector pane.

Front Panel Window

The front panel window is the user interface for the VI. Figure 2-1 shows an
example of a front panel window. You create the front panel window with
controls and indicators, which are the interactive input and output terminals
of the VI, respectively.

i3 Using Temperature.vi Front Panel E]@

File Edit Yiew Project Operate Tools window Help

TEMF
[>[@] © 1] [130: Aepicaton Fert -||;,;-||.~D:-||ﬁ-||e;~.-|@l

s

Mumber of Measurements Delay (sec)
5’ 0 Y
1 1 1 1 1 1
0.0 z0 40 60 &0 10.0
Temperature Graph Temp Plat m
%
—
=
[iF)
=
m
w
| | 1
i0o 20,0 30,0 400 50,0 e0.0 70.0 &S00 90,0 100.0
Time
w
< >

Figure 2-1. VI Front Panel

Block Diagram Window

After you create the front panel window, you add code using graphical
representations of functions to control the front panel objects. Figure 2-2
shows an example of a block diagram window. The block diagram window
contains this graphical source code. Front panel objects appear as terminals
on the block diagram.

LabVIEW Introduction Course Manual 2-2 ni.com

Lesson2 Navigating LabVIEW

= Using Temperature.vi Block Diagram E]@
File Edit Miew Project Operate Tools \Window Help TEnE
o | IE'|[.D|IE’ | 13pt Application Fonk - ”5;,1-1E l
A
Mumber of Measurements
GE—
Temperature Graph
Pt
Delay (sec) ,HTemp h
[}
) '
P
1000.00
[~
-
< >

Figure 2-2. Block Diagram

Icon and Connector Pane

You can use a VI as a subVI. A subVIis a VI that is used in of another VI,
similar to a function in a text-based programming language. To use a VI as
a subVl, it must have an icon and a connector pane.

e Every VI displays an icon in the upper right corner of the front panel
window and block diagram window. An example of the default icon is
shown at left. An icon is a graphical representation of a VI. The icon can
contain both text and images. If you use a VI as a subV], the icon identifies
the subVI on the block diagram of the VI. The default icon contains a
number that indicates how many new VIs you opened after launching
LabVIEW.

TTH To use a VI as a subVI, you need to build a connector pane, shown at left.
H | H The connector pane is a set of terminals on the icon that corresponds to the
controls and indicators of that VI, similar to the parameter list of a function
call in text-based programming languages. Access the connector pane by
right-clicking the icon in the upper right corner of the front panel window.
You cannot access the connector pane from the icon in the block diagram
window.

© National Instruments Corporation 2-3 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

C. Starting a VI

When you launch LabVIEW, the Getting Started window appears. Use this
window to create new VIs and projects, select among the most recently
opened LabVIEW files, find examples, and search the LabVIEW Help. You
also can access information and resources to help you learn about
LabVIEW, such as specific manuals, help topics, and resources at
ni.com/manuals.

The Getting Started window closes when you open an existing file or
create a new file. You can display the window by selecting View»Getting
Started Window.

£ Getti ng Started

BEX

New

'Eg Elark.

File Toals Help

i LabVIEW

Jlf_gg Empty Project
J‘.;g VI From Template...
= Mare,

Licensed for Base Yersion

Mew To LabWIEW?

W1 Getting Started with LabYIEW
LabvIEW Fundamentals

Guide to LabYIEW Documentation

LabWIEW Help

Open

& ..

Upgrading LabYIEW?

LabvIEW Projects
wercise 3-11Weather Station,lvproj

ﬂ_gé. C:h.. lar\Deskiop)Wweather Station. lvproj
Ig;l. T, Exercise 3-11Weather Station UL vi
g;l, C:h...Deskiop\Determine Mare Warnings. vi
,;2. ..rvan ZilariDeterming More \Warnings, vi
I;!gl, C:h. L tingsibzilarDesktopiUntitled 3, vi

,;2. C:\.. tingsibzilariDesktopiUntitled 2, vi

I;!gl, C:\...gsibzilart Deskbopt Demaonstr ation, vi
ég C:h. L tingsibzilarDeskiopiUntitled 1. vi

gg. C:h,...Settings\bzilar\Desktophadd&sub, vi
[Browse...

Changes to Existing Y¥Is and Functions
Mew Palette Organization
List of All New Features
Web Resources
Discussion Forums
Training Courses
LabWIEW Zone

Examples

& Find Examples. ..

Figure 2-3. LabVIEW Getting Started Window

LabVIEW Introduction Course Manual 2-4

You can configure LabVIEW to open a new, blank VI on launch instead of
displaying the window. Select Tools»Options, select Environment from
the Category list, and place a checkmark in the Skip Getting Started
window on launch checkbox.

ni.com

Lesson2 Navigating LabVIEW

@ Note The items in the Getting Started window vary depending on which version of
LabVIEW and which toolkits you install.

Creating or Opening a VI or Project

You can begin in LabVIEW by starting from a blank VI or project, opening
an existing VI or project and modifying it, or opening a template from which
to begin your new VI or project.

Creating New Projects and Vis

To open a new project from the Getting Started window, select Empty
Project in the New list. A new, unnamed project opens, and you can add
files to and save the project.

To open a new, blank VI that is not associated with a project, select Blank
VI in the New list in the Getting Started window.

Creating a VI from a Template

Select File»New to display the New dialog box, which lists the built-in VI
templates. You also can display the New dialog box by clicking the New link
in the Getting Started window.

© National Instruments Corporation 2-5 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

L New @

Create New Description
Sl L o] =
Blank W1 | The ikems in this categary create new Yis, b |
== From Template

ZHETp Tukorial {Getting Started)
@ Generate, Analyze, and Display
i) Generate and Display
=} Simulated
1‘5 Load From File and Display
'@ Generate and Display
—HETy Instrument 1/0 (GPIE)
) Read and Display
ZHp Framewarks
'@ Top Level Application Using Events
i) SUbYI with Error Handling
i) Single Loop Application
1‘5 Dialog Using Events
'@ Dialog (Base Package)
= Design Patterns
@ User Interface Event Handler
1‘5 Skandard State Machine
1‘5 Queued Message Handler
'@ Producer/Consumer Design Pattern (Events)
Eg Producer/Consumer Design Pattern (Data)
Jjég MasterSlave Design Pattern
=] < _)_.)
'@ Data Acquisition with MI-DACm:.vi o i —
= [£5 User Add to project

[Browse... ™

O ’ Cancel] [Help

Figure 2-4. New Dialog Box
Opening an Existing VI

Select Browse in the Open list in the Getting Started window to navigate
to and open an existing VI.

@ Tip The VIs you edit in this course are located in the C: \Exercises\LabVIEW
Basics I directory.

LabVIEW Introduction Course Manual 2-6 ni.com

Lesson2 Navigating LabVIEW

As the VI loads, a status dialog box similar to the following example might
appear.

13 Weather Station Ul vi

Loading: 80 Loaded

CiiPerforcelCustomerEducation CourseMaterialiLabYIEW Basics IlWersion 8,01
SolutionsiLY Basics I Project\Determing Warning. vi

Searching:

CiProgram FilesiMational InstrumentsiLabWIEW &, 00vi ikl analysisiMatrix)Support
ComplexMatrixiMethodsiPolynomial b

[Ignore Ikem] [Erowse. ..] [Stop...]

Figure 2-5. Dialog Box Indicating the Status of Loading Vs

The Loading section lists the subVIs of the VI as they load into memory and
shows the number of subVIs loaded into memory so far. You can cancel the
load at any time by clicking the Stop button.

If LabVIEW cannot immediately locate a subV1, it begins searching through
all directories specified by the VI search path. You can edit the VI search
path by selecting Tools»Options and selecting Paths from the Category
list.

You can have LabVIEW ignore a subVI by clicking the Ignore Item button,
or you can click the Browse button to search for the missing subVI.

Saving a VI

To save a new VI, select File»Save. If you already saved your VI, select
File»Save As to access the Save As dialog box. From the Save As dialog
box, you can create a copy of the VI, or delete the original VI and replace it
with the new one.

© National Instruments Corporation 2-7 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

LabVIEW Introduction Course Manual

13 save "Demonstration.vi" As

Original file

Ci\Documents and Settings\bzilarDesktoplDemaonstration, vi

=) Y Copy - create copy on disk,

ﬂ {(#) Substitute copy for original
Copy will be in memaory. Criginal will be closed,

Updates all referencing files in memory to refer to the copy,

() Create unopened disk copy
Criginal will be in memaory, Copy will not be opened.

(") Dpen additional copy
Both ariginal and copy will be in memory, Copy must have new name.

Add copy to Weather Stationlvproj

O

j Rename - rename file on disk

AEC

Updates all referencing files in memory ta refer to the new name.

[> Referencing Files in memary

[Continue. .. | [Cancel] l

Help

Figure 2-6. Save As Dialog Box

2-8

ni.com

Lesson2 Navigating LabVIEW

D. Project Explorer

Use projects to group together LabVIEW files and non-LabVIEW files,
create build specifications, and deploy or download files to targets. When
you save a project, LabVIEW creates a project file (. 1vpro3j), which
includes references to files in the project, configuration information, build
information, deployment information, and so on.

You must use a project to build applications and shared libraries. You also
must use a project to work with a real-time (RT), field-programmable gate
array (FPGA), or personal digital assistant (PDA) target. Refer to the
specific module documentation for more information about using projects
with the LabVIEW Real-Time, FPGA, and PDA modules.

Project Explorer Window

Use the Project Explorer window to create and edit LabVIEW projects.
Select File»New Project to display the Project Explorer window. You also
can select Project»New Project or select Empty Project in the New dialog
box to display the Project Explorer window.

The Project Explorer window includes the following items by default:

* Project root—Contains all other items in the Project Explorer
window. This label on the project root includes the filename for the
project.

— My Computer—Represents the local computer as a target in the
project.

— Dependencies—Includes items that VIs under a target require.

— Build Specifications—Includes build configurations for source
distributions and other types of builds available in LabVIEW
toolkits and modules. If you have the LabVIEW Professional
Development System or Application Builder installed, you can use
Build Specifications to configure stand-alone applications (EXEs),
shared libraries (DLLs), installers, and zip files.

@ Tip A target is any device that can run a VL.

When you add another target to the project, LabVIEW creates an additional
item in the Project Explorer window to represent the target. Each target
also includes Dependencies and Build Specifications sections. You can
add files under each target.

Project-Related Toolbars

Use the Standard, Project, Build Specifications, and Source Control
toolbar buttons to perform operations in a LabVIEW project. The toolbars

© National Instruments Corporation 2-9 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

are available at the top of the Project Explorer window, as shown in
Figure 2-7. You might need to expand the Project Explorer window to
view all of the toolbars.

@ ® ®© @

1
> Project Explorer - Weather ptation. lvproj E]@
File Edit View Project Operate ||Tools Window Help
=] &5 v | =~] | |

= [l Project: Weather Station.lvproj g
2 B My Computer
L. [ml, weather Station UL vi
> é; Determing \Warnings, i
é; Temnperature Simulakor,vi
i [l Weather Station States.ctl
=" Dependencies «¢

"% Build Specifications <—————

® O 6 6

1 Standard Toolbar 4 Source Control Toolbar 7 Dependencies
2 Project Toolbar 5 Project Root 8 Build Specifications
3 Build Specifications Toolbar 6 Target

Figure 2-7. Project Explorer Window

@ Tip The Source Control toolbar is only available if you have source control configured
in LabVIEW.

You can show or hide toolbars by selecting View»Toolbars and selecting
the toolbars you want to show or hide. You can also right-click an open area
on the toolbar and select the toolbars you want to show or hide.

Creating a LabVIEW Project

Complete the following steps to create a project.

1. Select FilexNew Project to display the Project Explorer window. You
can also select Project>Empty Project in the New dialog box to display
the Project Explorer window.

Add items you want to include in the project under a target.

Select File»Save Project to save the project.

Adding Existing Files To A Project

You can add existing files to a project. Use the My Computer item (or other
target) in the Project Explorer window to add files such as VIs or text files,
to a LabVIEW project.

LabVIEW Introduction Course Manual 2-10 ni.com

Lesson2 Navigating LabVIEW

You can add items to a project in the following ways:

* Right-click My Computer and select Add File from the shortcut menu
to add a file. You also can select Project»Add To Project»Add File
from the Project Explorer menu to add a file.

* Right-click the target and select Add Folder from the shortcut menu to
add a folder. You also can select Project»Add To Project»Add Folder
to add a folder. Selecting a folder on disk adds contents of the entire
folder, including files and contents of subfolders.

@ Note After you add a folder on disk to a project, LabVIEW does not automatically
update the folder in the project if you make changes to the folder on disk.

4. Right-click the target and select New» VI from the shortcut menu to add
a new, blank VI. You also can select FilexNew VI or Project»>Add To
Project»New VI to add a new, blank VI.

5. Select the VI icon in the upper right corner of a front panel or block
diagram window and drag the icon to the target.

6. Select an item or folder from the file system on your computer and drag
it to the target.

Removing Items from a Project
You can remove items from the Project Explorer window in the following
ways:
* Right-click the item you want to remove and select Remove from the
shortcut menu.

* Select the item you want to remove and press <Delete>.

* Select the item you want to remove and click the Delete button on the
Standard toolbar.

@ Note Removing an item from a project does not delete the item on disk.

Organizing Items in a Project

Use folders to organize items in the Project Explorer window. Right-click
the Project Root or the target and select New»Folder from the shortcut
menu to add a new folder. You also can create a new subfolder by
right-clicking an existing folder and selecting New»Folder from the
shortcut menu.

You can arrange items in a folder. Right-click a folder and select

Arrange By»Name from the shortcut menu to arrange items in alphabetical
order. Right-click a folder and select Arrange By»Type from the shortcut
menu to arrange items by file type.

© National Instruments Corporation 2-11 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Viewing Files in a Project

Saving a Project

@ Note Make
project.

When you add a file to a LabVIEW project, LabVIEW includes a reference
to the file on disk. Right-click a file in the Project Explorer window and
select Open from the shortcut menu to open the file in its default editor.

Right-click the project and select View»Full Paths from the shortcut menu
to view where files that a project references are saved on disk.

Use the Project File Information dialog box to view where files that a
project references are located on disk and in the Project Explorer window.
Select Project»File Information to display the Project File Information
dialog box. You also can right-click the project and select View»File
Information from the shortcut menu to display the Project File
Information dialog box.

You can save a LabVIEW project in the following ways:

* Select File»Save Project.

* Select Project»Save Project.

* Right-click the project and select Save from the shortcut menu.

* Click the Save Project button on the Project toolbar.

You must save new, unsaved files in a project before you can save the
project. When you save a project, LabVIEW does not save dependencies as
part of the project file.

a backup copy of a project when you prepare to make major revisions to the

LabVIEW Introduction Course Manual 2-12 ni.com

Lesson2 Navigating LabVIEW

E. Front Panel Window

When you open a new or existing VI, the front panel window of the VI
appears. The front panel window is the user interface for the VI. Figure 2-8
shows an example of a front panel window.

®—> ﬂllsing Temperature.vi Front Panel E]@
File Edit View Project ©Operate Tools Window Help lep
MOH
@ > & IEH 13pt Application Fant |« ||;;,v||‘.‘|j:v ||&v||f§1v |@
~ Controls =
Mumber of Measurements Delay (sec) QSearch | & gy |
i’
5’ 20 L w* Modern
1 1 1 1 1 1
0.0 20 40 &0 80 10.0 q ¥ [ane] *{EEE] *
) — ihza LGy
Temperature Grap emp Fio E =
- = el Nl b
i (]
e [g ()
b b b b
&, @ o | D
. (an o4
E
5 b System
o b Classic
w
b Express
b MET & Ackivel
| | 1 | | | 1 | | 1
10.0 20,0 30.0 400 S0.0 60.0 7O.0 80,0 90.0 100.0 b Addons
Time Select a Contral..,
b4
< >
‘1 Front Panel Window 2 Toolbar 3 Controls Palette

Figure 2-8. Example of a Front Panel

Controls and Indicators

You create the front panel window with controls and indicators, which are
the interactive input and output terminals of the VI, respectively. Controls
are knobs, push buttons, dials, and other input devices. Indicators are
graphs, LEDs and other displays. Controls simulate instrument input
devices and supply data to the block diagram of the VI. Indicators simulate
instrument output devices and display data the block diagram acquires or
generates.

Figure 2-8 has the following objects: two controls: Number of
Measurements and Delay(sec). It has one indicator: an XY graph named
Temperature Graph.

The user can change the input value for the Number of Measurements
and Delay(sec). The user can see the value generated by the VI on the
Temperature Graph. The VI generates the values for the indicators based

© National Instruments Corporation 2-13 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

on the code created on the block diagram. You learn about the block diagram
in the Numeric Controls and Indicators section.

Every control or indicator has a data type associated with it. For example,
the Delay (sec) horizontal slide is a numeric data type. The most commonly
used data types are numeric, Boolean value and string. You learn about other
data types in Lesson 3, Troubleshooting and Debugging Vls.

Numeric Controls and Indicators

The numeric data type can represent numbers of various types, such as
integer or real. The two common numeric objects are the numeric control
and the numeric indicator, as shown in Figure 2-9. Objects such as meters
and dials also represent numeric data.

Input
O=Fd <@
Ckpuk
b <@
1 Increment/Decrement Buttons 3 Numeric Indicator
2 Numeric Control

Figure 2-9. Numeric Controls and Indicators

To enter or change values in a numeric control, click the increment and
decrement buttons with the Operating tool or double-click the number with
either the Labeling tool or the Operating tool, enter a new number, and press
the <Enter> key.

Boolean Controls and Indicators

The Boolean data type represents data that only has two parts, such as TRUE
and FALSE or ON and OFF. Use Boolean controls and indicators to enter
and display Boolean values. Boolean objects simulate switches, push
buttons, and LEDs. The vertical toggle switch and the round LED Boolean
objects are shown in Figure 2-10.

Wertical Toggle Switch Round LED
i ‘ &

Figure 2-10. Boolean Controls and Indicators

LabVIEW Introduction Course Manual 2-14 ni.com

Lesson2 Navigating LabVIEW

String Controls and Indicators

The string data type is a sequence of ASCII characters. Use string controls
to receive text from the user such as a password or user name. Use string
indicators to display text to the user. The most common string objects are
tables and text entry boxes as shown in Figure 2-11.

Skring Conkral Table

Feceive bext from &
the user here,

Skring Indicator

Display text ko the user
here, Far large amounts
of bext, add a scroll bar, - T

&l]

Figure 2-11. String Controls and Indicators

Controls Palette

The Controls palette contains the controls and indicators you use to create
the front panel. You access the Controls palette from the front panel
window by selecting View»Controls Palette. The Controls palette is
broken into various categories; you can expose some or all of these
categories to suit your needs. Figure 2-12 shows a Controls palette with all
of the categories exposed and the Modern category expanded. During this
course, you work exclusively in the Modern category.

Controls =
CkSearch l o Wiew I

* Modern

— M
d!i’.’éé 'iﬂ ;ﬁﬁ}: [:

l 2“ gl e
= M e| O3
» » » »
&, @ o | DA
]|
F Swstem
» Classic
F Express
¥ MET & Ackive
b Addons

Select a Contral...

Figure 2-12. Controls Palette

© National Instruments Corporation 2-15 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

To view or hide categories (subpalettes), select the View button on the
palette, and select or deselect in the Always Visible Categories option. You
learn more about using the Controls palette in Exercise 2-2.

Shortcut Menus

All LabVIEW objects have associated shortcut menus. As you create a VI,
use the shortcut menu items to change the appearance or behavior of front
panel and block diagram objects. To access the shortcut menu, right-click

the object.

Figure 2-13 shows a shortcut menu for a meter.

Meter

u Yisible Ikems
Find Terminal
Change to Conkrol

J Label

Caption
Init Label

Cigital Cispl
Description and Tip. .. 1qital Displary %

J Ramp

Create

Replace

Daka Operations
Advanced

b . .

Fit Control ko Pane
Scale Object with Pane

Representation 4
[ata Range...

Farmat & Precision, ..

Add Meedle

Scale 3

Tewxt Labels

Properties

Figure 2-13. Shortcut Menu for a Meter

Property Dialog Boxes

Objects in the front panel window also have property dialog boxes that you
can use to change the look or behavior of the objects. Right-click an object
and select Properties from the shortcut menu to access the property dialog
box for an object. The Figure 2-14 shows the property dialog box for the
meter shown in Figure 2-13. The options available on the property dialog
box for an object are similar to the options available on the shortcut menu
for that object.

LabVIEW Introduction Course Manual 2-16 ni.com

Lesson2 Navigating LabVIEW

{H Knob Properties: Meter
Appearance Data Range || Scale | Format and Precision | Text Labels | Docume A
Label Caption
Wisible [visible

Meter

Enabled State

(%) Enabled
() Disabled
(") Disabled & grayed

Meedle 1 e | Delete

[shiow digital display(s)
Sh di
. Needle color P Al
Shows incrernent/decrement bukttons
Show value tip strip

[ok | [Cancel H Help l

Figure 2-14. Property Dialog Box for a Meter

Front Panel Window Toolbar

Each window has a toolbar associated with it. Use the front panel window
toolbar buttons to run and edit the VI.

The following toolbar appears on the front panel window.

u;u@ | 13pt Application Font - ” ;mvl

EM B [

Click the Run button to run a VI. LabVIEW compiles the VI, if necessary.
> You can run a VI if the Run button appears as a solid white arrow, shown at
left. The solid white arrow also indicates you can use the VI as a subVI if
you create a connector pane for the VI.

iy While the VI runs, the Run button appears as shown at left if the VI is
L a top-level VI, meaning it has no callers and therefore is not a subVI.

If the VI that is running is a subVI, the Run button appears as shown at left.

o

uﬁb The Run button appears broken when the VI you are creating or editing
contains errors. If the Run button still appears broken after you finish wiring

the block diagram, the VI is broken and cannot run. Click this button to

display the Error list window, which lists all errors and warnings.

© National Instruments Corporation 2-17 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

= Click the Run Continuously button to run the VI until you abort or pause
i execution. You also can click the button again to disable continuous running.

@ While the VI runs, the Abort Execution button appears. Click this button to
stop the VI immediately if there is no other way to stop the VI. If more than
one running top-level VI uses the VI, the button is dimmed.

A Caution The Abort Execution button stops the VI immediately, before the VI finishes
the current iteration. Aborting a VI that uses external resources, such as external
hardware, might leave the resources in an unknown state by not resetting or releasing
them properly. Design VIs with a stop button to avoid this problem.

T Click the Pause button to pause a running VI. When you click the Pause
button, LabVIEW highlights on the block diagram the location where you
paused execution, and the Pause button appears red. Click the Pause button
again to continue running the VL.

[T3pt Appication Fort__ |~ | Select the Text Settings pull-down menu to change the font settings for the
selected portions of the VI, including size, style, and color.

Select the Align Objects pull-down menu to align objects along axes,

=]
il including vertical, top edge, left, and so on.
== Select the Distribute Objects pull-down menu to space objects evenly,
"= including gaps, compression, and so on.
Wi Select the Resize Objects pull-down menu to resize multiple front panel
- objects to the same size.
o Select the Reorder pull-down menu when you have objects that overlap
¥ each other and you want to define which one is in front or back of another.

Select one of the objects with the Positioning tool and then select from
Move Forward, Move Backward, Move To Front, and Move To Back.

Select the Show Context Help Window button to toggle the display of the
Context Help window.

oy

Enter Text appears to remind you that a new value is available to replace
an old value. The Enter Text button disappears when you click it, press the
<Enter> key, or click the front panel or block diagram workspace.

@ Tip The <Enter> key on the numeric keypad ends a text entry, while the main <Enter>
key adds a new line. To modify this behavior, select Tools»Options, select the
Environment from the Category list, and place a checkmark in the End text entry with
Enter key option.

LabVIEW Introduction Course Manual 2-18 ni.com

Lesson2 Navigating LabVIEW

F. Block Diagram Window

Block diagram objects include terminals, subVlIs, functions, constants,
structures, and wires, which transfer data among other block diagram
objects.

13 add&sub.vi Front Panel g@

File Edit “iew Project Operate Tools ‘Window Help Py

o | lEl | 13pt Application Font |~ “!mv ”E arb

a a+hb
@IU.DD ID.DD

A

‘ 1 Indicator Terminals

{# addgsub.vi Block Diagram E]@
) b ah File Edt Wiew Project Operate Tools Window Help e,
@ID'DD 0.00 D[] O[n][@] (23] [ba]@ o7 [130t Appig o
o~
a pd ath a
[} E%\ \ 4
A =
D.< | b Subkrad a-b
¥ R \ L
AN -
<) " 2
O ® e O
2 Wires 3 Nodes 4 Control Terminals

Terminals

Figure 2-15. Example of a Block Diagram and Corresponding Front Panel

Objects on the front panel window appear as terminals on the block
diagram.Terminals are entry and exit ports that exchange information
between the front panel window and block diagram window.Terminals
are analogous to parameters and constants in text-based programming
languages. Types of terminals include control or indicator terminals and
node terminals. Control and indicator terminals belong to front panel
controls and indicators. Data you enter into the front panel controls (a and
b in the previous figure) enter the block diagram through the control
terminals. The data then enter the Add and Subtract functions. When the
Add and Subtract functions complete their calculations, they produce new
data values. The data values flow to the indicator terminals, where they
update the front panel indicators (a+b and a-b in the previous figure).

The terminals in Figure 2-15 belong to four front panel controls and
indicators. Because terminals represent the inputs and outputs of your VI,
subVIs and functions also have terminals shown at left. For example, the

© National Instruments Corporation 2-19 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

connector panes of the Add and Subtract functions have three node

EI} terminals. To display the terminals of the function on the block diagram,
right-click the function node and select Visible Items»Terminals from the
shortcut menu.

Controls, Indicators, and Constants

Controls, indicators, and constants behave as inputs and outputs of the block
diagram algorithm. Consider the implementation of the algorithm for the
area of a triangle:

Area = .5 * Base * Height

In this algorithm, Base and Height are inputs and Area is an output, as
shown in Figure 2-16.

Figure 2-16. Area of a Triangle Front Panel

The constant . 5 does not necessarily appear on the front panel window,
except possibly as documentation of the algorithm.

LabVIEW Introduction Course Manual 2-20 ni.com

Lesson2 Navigating LabVIEW

Figure 2-17 shows a possible implementation of this algorithm on a
LabVIEW block diagram. This block diagram has four different terminals
created by two controls, one constant, and one indicator.

[Determines the area of a triangle. |

Base {cm) Area {cm2)

Height {cm) Triangular Multiplier
—_— 0.5
Nazsp g)
1 Controls 2 Indicators 3 Constant

Figure 2-17. Area of a Triangle Block Diagram with Icon Terminal View

Notice that the Base (cm) and Height (cm) block diagram terminals have a
different appearance from the Area (cm2) terminal. There are two
distinguishing characteristics between a control and an indicator on the
block diagram. The first is an arrow on the terminal that indicates the
direction of data flow. The controls have arrows showing the data leaving
the terminal, whereas the indicator has an arrow showing the data entering
the terminal. The second distinguishing characteristic is the border around
the terminal. Controls have a thick border and indicators have a thin border.

You can view terminals with or without icon view. Figure 2-18 shows the
same block diagram without using the icon view of the terminals; however,
the same distinguishing characteristics between controls and indicators
exist.

[Determines the area of a triangle. |

Base (cm)

F I> I> F:rea [cm™2)

Triangular Multiplier
Height {crm) 0.5
b

Figure 2-18. Area of a Triangle Block Diagram without Icon Terminal View

© National Instruments Corporation 2-21 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Block Diagram Nodes

Nodes are objects on the block diagram that have inputs and/or outputs and
perform operations when a VI runs. They are analogous to statements,
operators, functions, and subroutines in text-based programming languages.
Nodes can be functions, subVIs, or structures. Structures are process control
elements, such as Case structures, For Loops, or While Loops. The Add and
Subtract functions in the previous figure are function nodes.

Functions

Functions are the fundamental operating elements of LabVIEW. Functions
do not have front panel windows or block diagram windows but do have
connector panes. Double-clicking a function only selects the function.

A function has a pale yellow background on its icon.

SubVis

SubVls are VIs that you build to use inside of another VI or that you access
on the Functions palette.

Any VT has the potential to be used as a subVI. When you double-click a
subVI on the block diagram, its front panel window appears. The front panel
includes controls and indicators. The block diagram includes wires, icons,
functions, possibly subVlIs, and other LabVIEW objects. The upper right
corner of the front panel window and block diagram window displays the
icon for the VI. This is the icon that appears when you place the VI on a
block diagram as a subVI.

SubVls also can be Express VIs. Express VIs are nodes that require minimal
wiring because you configure them with dialog boxes. Use Express Vs for
common measurement tasks. You can save the configuration of an Express
Vlas a subVI. Refer to the Express Vs topic of the LabVIEW Help for more
information about creating a subVI from an Express VI configuration.

LabVIEW uses colored icons to distinguish between Express VIs and other
VIs on the block diagram. Icons for Express VIs appear on the block
diagram as icons surrounded by a blue field whereas subVI icons have a
yellow field.

Expandable Nodes versus Icons

You can display VIs and Express VIs as icons or as expandable nodes.
Expandable nodes appear as icons surrounded by a colored field. SubVIs
appear with a yellow field, and Express VIs appear with a blue field. Use
icons if you want to conserve space on the block diagram. Use expandable
nodes to make wiring easier and to aid in documenting block diagrams. By
default, subVIs appear as icons on the block diagram, and Express VIs
appear as expandable nodes. To display a subVI or Express VI as an

LabVIEW Introduction Course Manual 2-22 ni.com

Lesson2 Navigating LabVIEW

expandable node, right-click the subVI or Express VI and remove the
checkmark next to the View As Icon shortcut menu item.

You can resize the expandable node to make wiring even easier, but it also
takes a large amount of space on the block diagram. Complete the following
steps to resize a node on the block diagram.

1.

4.

Move the Positioning tool over the node. Resizing handles appear at the
top and bottom of the node.

Move the cursor over a resizing handle to change the cursor to the
resizing cursor.

Use the resizing cursor to drag the border of the node down to display
additional terminals.

Release the mouse button.

To cancel a resizing operation, drag the node border past the block diagram
window before you release the mouse button.

The following figure shows the Basic Function Generator VI as a resized
expandable node.

3
W b Error in {no error)

sampling info
signal bype

(d
(d
(d
g b reset signal
(3
(3
(3

errar ouk b
L]

signal ouk W

Figure 2-19. Basic Function Generator VI in Different Display Modes

@ Note If you display a subVI or Express VI as an expandable node, you cannot display
the terminals for that node and you cannot enable database access for that node.

© National Instruments Corporation

2-23 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Wires

You transfer data among block diagram objects through wires. In

Figure 2-15, wires connect the control and indicator terminals to the Add
and Subtract function. Each wire has a single data source, but you can wire
it to many VIs and functions that read the data. Wires are different colors,
styles, and thicknesses, depending on their data types.

A broken wire appears as a dashed black line with a red X in the middle, as
shown at left. Broken wires occur for a variety of reasons, such as when you
try to wire two objects with incompatible data types.

Table 2-1 shows the most common wire types.

Table 2-1. Common Wire Types

Wire Type

Scalar 1D Array 2D Array Color

Numeric

Orange (floating-point),
Blue (integer)

Boolean

.................... [ERRITRMIRRPRIPRISY TS Green

String

In LabVIEW, you use wires to connect multiple terminals together to pass
data in a V1. You must connect the wires to inputs and outputs that are
compatible with the data that is transferred with the wire. For example, you
cannot wire an array output to a numeric input. In addition the direction of
the wires must be correct. You must connect the wires to only one input and
at least one output. For example, you cannot wire two indicators together.
The components that determine wiring compatibility include the data type
of the control and/or the indicator and the data type of the terminal.

Data Types

Data types indicate what objects, inputs, and outputs you can wire together.
For example, if a switch has a green border, you can wire a switch to any
input with a green label on an Express VI. If a knob has an orange border,
you can wire a knob to any input with an orange label. However, you cannot
wire an orange knob to an input with a green label. Notice the wires are the
same color as the terminal.

Automatically Wiring Objects

As you move a selected object close to other objects on the block diagram,
LabVIEW draws temporary wires to show you valid connections. When you
release the mouse button to place the object on the block diagram,
LabVIEW automatically connects the wires. You also can automatically

LabVIEW Introduction Course Manual 2-24 ni.com

Lesson2 Navigating LabVIEW

wire objects already on the block diagram. LabVIEW connects the terminals
that best match and does not connect the terminals that do not match.

Toggle automatic wiring by pressing the spacebar while you move an object
using the Positioning tool.

By default, automatic wiring is enabled when you select an object from the
Functions palette or when you copy an object already on the block diagram
by pressing the <Ctrl> key and dragging the object. Automatic wiring is
disabled by default when you use the Positioning tool to move an object
already on the block diagram.

You can adjust the automatic wiring settings by selecting Tools»Options
and selecting Block Diagram from the Category list.

Manually Wiring Objects

When you pass the Wiring tool over a terminal, a tip strip appears with the
name of the terminal. In addition, the terminal blinks in the Context Help
window and on the icon to help you verify that you are wiring to the correct
terminal. To wire objects together, pass the Wiring tool over the first
terminal, click, pass the cursor over the second terminal, and click again.
After wiring, you can right-click the wire and select Clean Up Wire from
the shortcut menu to have LabVIEW automatically choose a path for the
wire. If you have broken wires to remove, press <Ctrl-B> to delete all the
broken wires on the block diagram.

Functions Palette

The Functions palette contains the VIs, functions and constants you use to
create the block diagram. You access the Functions palette from the block
diagram by selecting View»Functions Palette. The Functions palette is
broken into various categories; you can show and hide categories to suit
your needs. Figure 2-20 shows a Functions palette with all of the categories
exposed and the Programming category expanded. During this course, you
work mostly in the Programming category, but you also use other
categories, or subpalettes.

© National Instruments Corporation 2-25 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Block Diagram Too

Functions X
@, Search I o Wi I
* Programming
BIF -. »)
=
M M I‘,E\f> » »
> O
=g
(] i
@' e BT
| & | R
¥ Measurement IO
¥ Instrument IO
¥ Wision and Makion
¥ Mathematics
¥ Signal Processing
¥ Data Communication
¥ Connectivity
» Express
» Fawvorites
Select a vl

Figure 2-20. Functions Palette

To view or hide categories, click the View button on the palette, and select
or deselect the Always Visible Categories option. You learn more about
using the Functions palette in Exercise 2-2.

Ibar

When you run a VI, buttons appear on the block diagram toolbar that you
can use to debug the VI. The following toolbar appears on the block
diagram.

NEED

g E (P [13pt Application Fort |« || 3o~ || oa~ | [&0~ 2

bl

Click the Highlight Execution button to display an animation of the block
diagram execution when you click the Run button. Notice the flow of data
through the block diagram. Click the button again to disable execution
highlighting.

Click the Retain Wire Values button to save the wire values at each point
in the flow of execution so that when you place a probe on the wire you can
immediately retain the most recent value of the data that passed through the
wire. You must successfully run the VI at least once before you can retain
the wire values.

Click the Step Into button to open a node and pause. When you click the
Step Into button again, it executes the first action and pauses at the next
action of the subVTI or structure. You also can press the <Ctrl> and down

LabVIEW Introduction Course Manual 2-26 ni.com

Lesson2 Navigating LabVIEW

arrow keys. Single-stepping through a VI steps through the VI node by
node. Each node blinks to denote when it is ready to execute.

Click the Step Over button to execute a node and pause at the next node.
E’ You also can press the <Ctrl> and right arrow keys. By stepping over the
node, you execute the node without single-stepping through the node.

Click the Step Out button to finish executing the current node and pause.
o When the VI finishes executing, the Step Out button is dimmed. You also
can press the <Ctrl> and up arrow keys. By stepping out of a node, you
complete single-stepping through the node and navigate to the next node.

& The Warning button appears if a VI includes a warning and you placed a

checkmark in the Show Warnings checkbox in the Error List window. A
warning indicates there is a potential problem with the block diagram, but it
does not stop the VI from running.

© National Instruments Corporation 2-27 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Exercise 2-1
Goal

Concept: Exploring a VI

Identity the parts of an existing VI.

Description

You received a VI from an employee that takes the seconds until a plane
arrives at an airport and converts the time into a combination of
hours/minutes/seconds. You must evaluate this VI to see if it works as
expected and can display the remaining time until the plane arrives.

1.

Using Windows Explorer, navigate to the C: \Exercises\LabVIEW
Basics I\Exploring a VI directory.

Double-click Exploring_a_VI.exe to open the simulation.
Follow the instructions given in the simulation.

Open Seconds Breakdown.vi inthe C:\Exercises\LabVIEW
Basics I Exporing a VI directory. Thisis the LabVIEW VI shown
in the simulation.

Test the VI using the values given in Table 2-2.
O Enter the input value in the Total Time in Seconds control.
O Click the Run button.

O For each input, compare the given outputs to the outputs listed in
Table 2-2. If the VI works correctly, they should match.

Table 2-2. Testing Values for Seconds Breakdown.vi

Input Output

0 seconds 0 hours, 0 minutes, O seconds

60 seconds 0 hours, 1 minute, 0 seconds

3600 seconds 1 hour, O minutes, 0 seconds

3665 seconds 1 hour, 1 minutes, 5 seconds

End of Exercise 2-1

LabVIEW Introduction Course Manual

2-28 ni.com

Lesson2 Navigating LabVIEW

G. Searching for Controls, Vs, and Functions

When you select View»Controls or View»Functions to open the Control
and Function palettes, two button appear at the top of the palette.

Search—Changes the palette to search mode so you can perform text-based
searches to locate controls, VIs, or functions on the palettes. While a palette

1s in search mode, click the Return button to exit search mode and return to
the palette.

-.,,,w , View—Provides options for selecting a format for the current palette,
-:.,,,, Vi
showing and hiding categories for all palettes, and sorting items in the Text

and Tree formats alphabetically. Click the View button and select Options
from the shortcut menu to display the Controls/Functions Palettes
category of the Options dialog box, in which you can select a format for all
palettes. This button appears only if you click the thumbtack in the upper left
corner of a palette to pin the palette.

Until you are familiar with the location of VIs and functions, search for the
function or VI using the Search button. For example, if you want to find the
Random Number function, click the Search button on the Functions palette
toolbar and start typing Random Number in the text box at the top of the
palette. LabVIEW lists all matching items that either start with or contain
the text you typed. You can click one of the search results and drag it to the
block diagram, as shown in Figure 2-21.

Q Return ' o i ‘
randani
Random Mumber (0-1) < =Express Mumeric == ~
Randorm Mumber (0-1) < <Numeric x>
.=‘
— =
v
[Search Options] [Help]

Figure 2-21. Searching for an Object in the Functions Palette

© National Instruments Corporation 2-29 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Double-click the search result to highlight its location on the palette. If the
object is one you need to use frequently, you can add it to your Favorites

category. Right-click the object on the palette and select Add Item to
Favorites, as shown in Figure 2-22.

%]

CkSearch l B i |
¥ Programming
¥ Measurement IO
¥ Instrument IO

¥ Wision and Maotion
* Mathernatics

L Mureric

> B>

Functions =

@, Search l o Vi l

T+
B> fir>
i1~ —
¥
I@ Haiv I> Ib
> [B
mm a o Meoe et
o] Ig.ﬂ.ddltemtoFavorites
Hel
[o
¥ Signal Processing
¥ Data Communication
» Connectivity
F Express
b Favorites
Select a wl...

¥ Programming
P Measurement IjO
P Insktrument IO
¥ Wision and Makion
w* Mathematics

L Murneric

B BB
b | B B>
= > B &
> B i
B B B
B B B

» Signal Processing
» Data Communication
P Connectivity
P Express
w* Favorites

=

Select avIL.,

LabVIEW Introduction Course Manual

Figure 2-22. Adding an Item to the Favorites Category of a Palette

2-30

ni.com

Lesson2 Navigating LabVIEW

Exercise 2-2 Concept: Navigating Palettes
Goal

Learn to find controls and functions.

Description

1. OpenNavigating Palettes.exeintheC:\Exercises\LabVIEW
Basics I\Navigating Palettes directory.

2. Follow the instructions given. This simulation demonstrates how to find
a control or function.

3. Using the instructions given in the simulation, place the DAQ Assistant
Express VI in the Favorites category of the Functions palette.

End of Exercise 2-2

© National Instruments Corporation 2-31 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

H. Selecting a Tool

You can create, modify and debug VIs using the tools provided by
LabVIEW. A tool is a special operating mode of the mouse cursor. The
operating mode of the cursor corresponds to the icon of the tool selected.
LabVIEW chooses which tool to select based on the current location of the
mouse.

Figure 2-23. Tools Palette

@ Tip You can manually choose the tool you need by selecting it on the Tools palette.
Select View»Tools Palette to display the Tools palette.

LabVIEW Introduction Course Manual 2-32 ni.com

Operating Tool

T

Lesson2 Navigating LabVIEW

When the mouse cursor changes to the icon shown at left, it is using the
Operating tool. The Operating tool changes the values of a control. For
example, in Figure 2-24 the Operating tool moves the pointer on the
Horizontal Pointer Slide. When the mouse hovers over the pointer, the
cursor automatically accesses the Operating tool.

i3 Using Temperature.vi Front Panel E]@
File Edit Yiew Project Operate Tools window Help lep
MOH
& [@ @|13ptAppIicationFont ~ |30 |[0ar |- | [#5~ |@
.S
Murber of Measurements Dela)
i’
-
1 1 1 1 1 1
0.0 20 40 6.0 3.0 10.0
Temperature Graph Temp Flok m_
.Jé
=
[l
[}
i
[T
0.0 IDD 2UD SDD 4DD SUD GUD ?DD SDU QUD IDUD
Time
v
< >

Figure 2-24. Using the Operating Tool

The Operating tool is mostly used on the front panel window, but you also
can use the Operating tool on the block diagram window to operate
increment/decrement buttons.

© National Instruments Corporation

2-33 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Positioning Tool

f{ When the mouse cursor is an arrow as shown at left, the Positioning tool is
functioning. The Positioning tool selects or resizes objects. For example, in
Figure 2-25 the Positioning tool selects the Number of Measurements
numeric control. After selecting an object, you can move, copy, or delete the
object. When the mouse hovers over the edge of an object, the cursor
automatically accesses the Positioning tool.

b Using Temperature.vi Front Panel E]@
File Edit Yiew Project Operate Tools window Help TEFF
HMOH
o |2 IEH 13pt Application Font - ||=mv ||T|]:v ||ﬁv ||f§"lv HE i
A
 Humber of Measurements, Delay (sec)
15
'rFfED G S B
FEsom s ﬁ 1 1 1 1 1 1
0.0 20 40 50 8.0 10.0
Temperature Graph Temp Plot E_
%
—
[
I
=
m
w
1 1 1 1 1 1 1 1 1 1
ioo 20,0 30,0 400 50,0 e0.0 70.0 &S00 920.0 100.0
Time
b
< >

Figure 2-25. Using the Positioning Tool to Select an Object

If the mouse hovers over a resizing node of an object, the cursor mode
changes to show that you can resize the object, as shown in Figure 2-26.
Notice that the cursor is hovering over a corner of the XY Graph at a resizing
node, and the cursor mode changes to a double-sided arrow.

LabVIEW Introduction Course Manual 2-34 ni.com

Lesson2 Navigating LabVIEW

i3 Using Temperature.vi Front Panel E]@
File Edit Yiew Project Operate Tools window Help lep
MOH
o & IEH 13pt Application Fant |« ||;,;,v o ||ﬁv ||f§'\v |@
A
Murber of Measurements Delay (sec)
i’
SJ = v]
1 1 1 1 1 1
0.0 20 40 6.0 3.0 10.0
Temperature Graph Temp Flok EJ
ik
.Jé
=
T
i
[T
0.0 IDU 2UD SDD 4DU SUD GUD ?DD SDU QUD IDUD
o o Time o
v
< >

Figure 2-26. Using the Positioning Tool to Resize an Object

You can use the Positioning tool on both the front panel window and the
block diagram.

© National Instruments Corporation 2-35 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Labeling Tool

When the mouse cursor changes to the icon shown at left, the Labeling tool

is in operation. Use the Labeling tool to enter text in a control, to edit text,
and to create free labels. For example, in Figure 2-27 the Labeling tool
enters text in the Number of Measurements numeric control. When the
mouse hovers over the interior of the control, the cursor automatically
accesses the Labeling tool. Click once to place a cursor inside the control.
Then. double-click to select the current text.

i3 Using Temperature.vi Front Panel E]@

File Edit Yiew Project Operate Tools window Help

& [@ EH t3pt Application Fort |~ |[§o~

Murber of Measurements Delay (sec)

i’

;FEDI o .
1 1 1 1 1 1
0.0 20 40 6.0 3.0 10.0

=
a- -] [65-][9]

.

Temperature Graph Temp Flok m)

Fahrenheit

0.0 IDD 2DD SDD 4DD SDD GDD ?DD SDD QDD IDDD
Time

Figure 2-27. Using the Labeling Tool

When you are not in a specific area of a front panel window or block
diagram window that accesses a certain mouse mode, the cursor appears as
cross-hairs. When the cross-hairs mode is active, you can double-click to
access the Labeling tool and create a free label.

LabVIEW Introduction Course Manual 2-36 ni.com

Lesson2 Navigating LabVIEW

Wiring Tool

% When the mouse cursor changes to the icon shown at left, the Wiring tool is
in operation. Use the Wiring tool to wire objects together on the block
diagram. For example, in Figure 2-28 the Wiring tool wires the Number of
Measurements terminal to the count terminal of the For Loop. When the
mouse hovers over the exit or entry point of a terminal or over a wire, the
cursor automatically accesses the Wiring tool.

= Using Temperature.vi Block Diagram * E]@
File Edit Miew Project Operate Tools \Window Help TEnE
IE 13pt Application Fonk - ” i 1@ l
A
Mumber of Measurements
N
Temperature Graph
Pt
Delay (sec) ,HTemp
L
[}
) '
P
1000.00
[~
o
< >

Figure 2-28. Using the Wiring Tool

The Wiring tool works mainly with the block diagram window and when
you create a connector pane on the front panel window.

Other Tools Accessed from the Palette

You can access the Operating, Positioning, Labeling, and Wiring tools
directly from the Tools palette, rather than using the Auto tool selection
mode. Select View»Tools Palette to access the Tools palette.

Figure 2-29. The Tools Palette

© National Instruments Corporation 2-37 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

a
il

@ |

@

Kt&

The top item in the Tools palette is the Automatic Tool Selection. When this
is selected, LabVIEW automatically chooses a tool based on the location of
your cursor. You can turn off Auto tool by deselecting the item, or by
selecting another item in the palette. There are some additional tools on the
palette, as described below:

Use the Object Shortcut Menu tool to access an object shortcut menu with
the left mouse button.

Use the Scrolling tool to scroll through windows without using scrollbars.

Use the Breakpoint tool to set breakpoints on VIs, functions, nodes, wires,
and structures to pause execution at that location.

Use the Probe tool to create probes on wires on the block diagram. Use the
Probe tool to check intermediate values in a VI that produces questionable
or unexpected results.

Use the Color Copy tool to copy colors for pasting with the Coloring tool.

Use the Coloring tool to color an object. The Coloring tool also displays the
current foreground and background color settings.

LabVIEW Introduction Course Manual 2-38 ni.com

Lesson2 Navigating LabVIEW

Exercise 2-3 Concept: Selecting a Tool

Goal

Use the Automatic Tool Selection to learn about its operation.

Description

During this exercise, you complete tasks in a partially built front panel and
block diagram. These tasks give you experience in using the Auto tool.

1. OpenUsing Temperature.vi.
4 Open LabVIEW.
Q Select File»Open.

O Navigate to the C: \Exercises\LabVIEW Basics I\Using
Temperature directory.

Q0 Select Using Temperature.vi.
Q Click Open and then OK.

Figure 2-30 shows an example of the front panel as it appears after your
modifications. You increase the size of the waveform graph, rename the
numeric control, change the value of the numeric control, and move the
pointer on the horizontal pointer slide.

Murmber of Measurements Delay (sec)
i
r) 20 Y

1 I I I I]
oo 20 40 50 80 100

Temperature Graph Temp Plak m

Fahrenheit

| 1 | | | | | | | 1 |
0.0 100 2000 30,0 40,0 50,0 0.0 F0.0 S0.0 90,0 100.0
Tirne

Figure 2-30. Using Temperature VI Front Panel

© National Instruments Corporation 2-39 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

2.

LabVIEW Introduction Course Manual

Expand the waveform graph horizontally using the Positioning tool.
O Move the cursor to the left edge of the Waveform Graph.

 Move the cursor to the middle left resizing node until the cursor
changes to a double arrow, as shown in Figure 2-31.

Temperature Graph Temp Plok m J
O O
0.0
85.0-
T
=
5 a0.0-
= L C
(118
75.0-
70.0-) , |
0.0 50.0 100.0
O O Tirne O

O Drag the repositioning point until the Waveform Graph is the size
you want.

Rename the numeric control to Number of Measurements using the
Labeling Tool

U Move the cursor to the text Numeric.
U Double click the word Numeric.
a

Enter the text Number of Measurements.

Q Complete the entry by pressing the <Enter> key on the numeric

keypad, pressing the Enter Text button on the toolbar, or clicking
the mouse outside of the control.

Change the value of the Number of Measurements control to 20 using
the Labeling tool.

U Move the cursor to the interior of the numeric control.

U When the cursor changes to the Labeling tool icon, as shown at left,
press the mouse button.

U Enter the text 20.

2-40 ni.com

Lesson2 Navigating LabVIEW

Q Complete the entry by pressing the <Enter> key on the numeric
keypad, pressing the Enter Text button on the toolbar, or clicking
the mouse outside of the control.

5. Change the value of the pointer on the horizontal pointer slide using the
Operating tool.

U Move the cursor to the pointer on the slide.

L_':!-'n.. When the cursor changes to the Operating tool icon, as shown at left,
press the mouse button and drag to the value you want.

U Leave the value at a value greater than 0.

6. Try changing the value of objects, resizing objects, and renaming
objects until you are comfortable with using these tools.

Figure 2-31 shows an example of the block diagram as it appears after your
modifications. You move the Number of Measurements terminal and wire
the terminal to the count terminal of the For Loop.

Mumber of Measurements
Temperature Graph
5
Delay (sec)
[I}x‘>'
1000, 00

Figure 2-31. Using Temperature VI Block Diagram
7. Open the block diagram.

8. Move the Number of Measurements terminal using the Positioning
tool.

U Move the cursor to the Number of Measurements terminal.

['{ U4 Move the cursor in the terminal until the cursor changes to an arrow,
as shown at left.

U Click and drag at the terminal to the new location as shown in
Figure 2-31.

© National Instruments Corporation 2-41 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW
9. Wire the Number of Measurements terminal to the count terminal of
the For Loop using the Wiring tool.
U Move the cursor to the Number of Measurements terminal.

% Q Move the cursor to the right of the terminal, stopping when the
cursor changes to a wiring spool, as shown at left.

U Click to start the wire.
E Q Move the cursor to the count (N) terminal of the For Loop.
U Click to end the wire.

10. Change the value of the Delay (sec) control to something greater than
zero (0).

11. Click the Run button to run the VI.

The time required to execute this VI is equivalent to Number of
Measurements times Delay (Sec). Once the VI is finished executing,
the data is displayed on the Temperature Graph.

12. Try moving other objects, deleting wires and rewiring them, and wiring
objects and wires together until you are comfortable with using these
tools.

13. Select File»Close to close the VI and click the Don’t save - All button.
You do not need to save the VI.

End of Exercise 2-3

LabVIEW Introduction Course Manual 2-42 ni.com

Lesson2 Navigating LabVIEW

. Data Flow

LabVIEW follows a dataflow programming system of block diagrams
having executable nodes connected by wires, where the wires between
nodes indicate that data produced by one node is used by another node.
Nodes may execute when they have received all necessary input data and
may produce output data to other nodes in the block diagram.

Visual Basic, C++, JAVA, and most other text-based programming
languages follow a control flow model of program execution. In control
flow, the sequential order of program elements determines the execution
order of a program.

For a dataflow programming example, consider a block diagram that adds
two numbers and then subtracts 50. 00 from the result of the addition, as
shown in Figure 2-32. In this case, the block diagram executes from left to
right, not because the objects are placed in that order, but because the
Subtract function cannot execute until the Add function finishes executing
and passes the data to the Subtract function. Remember that a node executes
only when data are available at all of its input terminals and supplies data to
the output terminals only when the node finishes execution.

Mumber 1 ResLt
A esu
=
Mumber 2
] 50.00

Figure 2-32. Dataflow Programming Example

In Figure 2-33, consider which code segment would execute first—the Add,
Random Number, or Divide function. You cannot know because inputs to
the Add and Divide functions are available at the same time, and the
Random Number function has no inputs. In a situation where one code
segment must execute before another, and no data dependency exists
between the functions, use other programming methods, such as error
clusters, to force the order of execution. Refer to Lesson 5, Relating Data,
for more information about error clusters.

© National Instruments Corporation 2-43 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Murmber 1
¥

Mumber 2
¥

Mumber 3
}

Mumber 4
b

Resulk 1
r

Resulk 2
»

LabVIEW Introduction Course Manual

Figure 2-33. Dataflow Example for Multiple Code Segments

2-44

ni.com

Lesson2 Navigating LabVIEW

Exercise 2-4 Concept: Data Flow
Goal

Understand how data flow determines the execution order in a VL.

Description

1. Open the Dataflow.exe simulation from the C: \Exercises\
LabVIEW Basics I\Dataflow directory.

2. Follow the instructions given. This simulation demonstrates data flow.

End of Exercise 2-4

© National Instruments Corporation 2-45 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

J. Building a Simple VI

Most LabVIEW VIs have three main tasks: acquiring some sort of data,

analyzing the acquired data, and presenting the result. When each of these
parts are simple, you can complete the entire VI using very few objects on
the block diagram. Express VIs are designed specifically for completing

common, frequently used operations. In this section, you learn about some
Express VIs in each of these categories: acquire, analyze, and present. Then
you learn to build a simple VI using these three parts, as shown in

Figure 2-34.

b Acquire Analyze Present.vi Front Panel

=X

File | Edit Yiew Project

Qperate Tools Window Help

o |2 IE' | 13pt Application Font | ” 8= ||~ ||ﬁv ||E§'lv |]
A
voltage (Filkered) m
‘WaveForm Graph Yolkage]
4
2
£
£
=
v
< *
13 ac quire Analyze Present.vi Block Diagram E]@
File Edit Miew Project Operate Tools \Window Help .,.ﬁ
— e gefc-
o | IEl |'¢CI|'EI’ | 13pt Application Font | = || 7o || s | 1
-
' i
@
»
L 3 L
DV Assiskant Filker
data Signal Wawveform Graph
Filtered Signal ¥
w
ks »

Figure 2-34. Acquire, Analyze, and Present Example Front Panel Window and
Block Diagram Window

LabVIEW Introduction Course Manual

2-46

ni.com

Acquire

(¥

i

£

=

Analyze

e

Lesson2 Navigating LabVIEW

On the Functions palette, the Express VIs are grouped together in the
Express category. Express VIs use the dynamic data type to pass data
between Express Vls.

Express VIs used for the Acquire task include the following: DAQ
Assistant, Instrument I/O Assistant, Simulate Signal, and Read from
Measurement File.

DAQ Assistant

The DAQ Assistant acquires data through a data acquisition device.You
must use this Express VI frequently throughout this course. Refer to
Lesson 8, Acquiring Data, for more information about the DAQ Assistant.
Until you learn more about data acquisition, you only use one channel of the
data acquisition device, CHO. This channel is connected to a temperature
sensor on the DAQ Signal Accessory. You can touch the temperature sensor
to change the temperature the sensor reads.

Instrument 1/0 Assistant
The Instrument I/O Assistant acquires instrument control data, usually from

a GPIB or serial interface. Refer to Lesson 9, Instrument Control, for more
information about the Instrument I/O Assistant.

Simulate Signal

The Simulate Signal Express VI generates simulated data such as a sine
wave.

Read From Measurement File

The Read From Measurement File Express VI reads a file that was created
using the Write To Measurement File Express VI. It specifically reads LVM
or TDM file formats. This Express VI does not read ASCII files. Refer to
Lesson 6, Storing Measurement Data, for more information on reading data
from a file.

Express VIs used for the Analyze task include the following: amplitude and
level measurements, statistics, tone measurements, and so on.

Amplitude and Level Measurements

The Amplitude and Level Measurements Express VI performs voltage
measurements on a signal. These include DC, rms, maximum peak,
minimum peak, peak to peak, cycle average, and cycle rms measurements.

© National Instruments Corporation 2-47 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

]

S

El

Present

a\

1.3 LEC
+ 4
LILEL

Statistics

The Statistics Express VI calculates statistical data from a waveform. This
includes mean, sum, standard deviation, and extreme values.

Spectral Measurements

The Spectral Measurements Express VI performs spectral measurement on
a waveform, such as magnitude and power spectral density.

Tone Measurements

The Tone Measurements Express VI searches for a single tone with the
highest frequency or highest amplitude. It also finds the frequency and
amplitude of a single tone.

Filter

The Filter Express VI processes a signal through filters and windows. Filters
used include the following: Highpass, Lowpass, Bandpass, Bandstop, and
Smoothing. Windows used include Butterworth, Chebyshev, Inverse
Chebysheyv, Elliptical, and Bessel.

Accomplish present results by using Express VIs that perform a function,
such as the Write to Measurement File Express VI, or indicators that present
data on the front panel window. The most commonly used indicators for this
task include the Waveform Chart, the Waveform Graph, and the XY Graph.
Common Express VIs include the Write to Measurement File Express VI,
the Build Text Express VI, DAQ Assistant, and the Instrument I/O Assistant.
In this case, the DAQ Assistant and the Instrument I/O Assistant provide
output data from the computer to the DAQ device or an external instrument.

Write to Measurement File

The Write to Measurement File Express VI writes a file in LVM or TDM
file format. Refer to Lesson 6, Storing Measurement Data, for more
information on writing to measurement files.

Build Text

The Build Text Express VI creates text, usually for displaying on the front
panel window or exporting to a file or instrument. Refer to Lesson 6, Storing
Measurement Data, for more information on creating strings.

LabVIEW Introduction Course Manual 2-48 ni.com

Running a VI

Ilh

Run Button Errors

Lesson2 Navigating LabVIEW

After you configure the Express VIs and wire them together, you can run the
VI. When you finish building your VI, click the Run button on the toolbar
to execute the VI.

While the VI is running, the Run button icon changes to the one shown at
left. After the execution completes, the Run button icon changes back to its
original state, and the front panel indicators contain data.

If a VI does not run, it is a broken, or nonexecutable, VI. The Run button
appears broken, shown as follows, when the VI you are creating or editing
contains errors.

If the button still appears broken when you finish wiring the block diagram,
the VI is broken and cannot run.

Generally, this means that a required input is not wired, or a wire is broken.
Press the broken run button to access the Error List dialog box. The Error
List dialog box lists each error and describes the problem. You can
double-click an error to go directly to the error. Refer to Lesson 3,
Troubleshooting and Debugging VIs, for more information on debugging.

© National Instruments Corporation 2-49 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Exercise 2-5 Simple AAP VI
Goal

Create a simple VI that accomplishes the acquire, analyze, and present

tasks.

Scenario

You need to acquire a sine wave for 0.1 seconds, determine and display the

average value, log the data, and display the sine wave on a graph.

Design

The input for this problem is an analog channel of sine wave data. The
outputs include a graph of the sine data and a file logging the data.

Flowchart

? ; ACQUIRE 5 ANALYZE

y

PRESENT

Acquire Data

Display Data

A 4

Determine
Average Value

Log Data

.| Display Average

Value

Figure 2-35. Simple AAP VI Flowchart

LabVIEW Introduction Course Manual 2-50

ni.com

Program Architecture—Quiz

Lesson2 Navigating LabVIEW

1. Acquire: Circle the Express VI that is best suited to acquiring a sine
wave from a data acquisition device.

DAQ Assistant

The DAQ Assistant acquires data
through a data acquisition device.

&

Instrument I/O
Assistant

The Instrument I/O Assistant acquires
instrument control data, usually from a
GPIB or serial interface.

2

Simulate Signal
Express VI

The Simulate Signal Express VI
generates simulated data, such as a
sine wave.

2. Analyze: Circle the Express VI that is best suited to determining the
average value of the acquired data.

== | Tone Measurements The Tone Measurements Express VI
Express VI finds the frequency and amplitude of a
single tone.

|-

Statistics Express VI

The Statistics Express VI calculates
statistical data from a waveform.

Bl

= | Amplitude and Level The Amplitude and Level

]IEEE Measurements Express | Measurements Express VI performs
VI voltage measurements on a signal.
Filter Express VI The Filter Express VI processes a signal

through filters and windows.

3. Present: Circle the Express VIs and/or indicators that are best suited to
displaying the data on a graph and logging the data to file.

DAQ Assistant

The DAQ Assistant acquires data
through a data acquisition device.

| &

Write to Measurement
File Express VI

The Write to Measurement File Express
VI writes a file in LVM or TDM file
format.

© National Instruments Corporation

2-51

LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

w3 er| | Build Text Express VI | The Build Text Express VI creates text,
usually for displaying on the front panel
window or exporting to a file or

instrument.
fﬂ Waveform Graph The waveform graph displays one or
TR more plots of evenly sampled
measurements.

Refer to the next page for answers to this quiz.

LabVIEW Introduction Course Manual 2-52 ni.com

Lesson2 Navigating LabVIEW

Program Architecture—Solutions to Quiz

1.

© National Instruments Corporation

Acquire: Use the DAQ Assistant to acquire the sine wave from the data
acquisition device.

Analyze: Use the Statistics Express VI to determine the average value of
the sine wave. Because this signal is cyclical, you could also use the
Cycle Average option in the Amplitude and Level Measurements
Express VI to determine the average value of the sine wave.

Present: Use the Write to Measurement File Express VI to log the data
and use the Waveform Graph to display the data on the front panel
window.

2-53 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Implementation

1. Prepare your hardware to generate a sine wave. If you are not using
hardware, skip to step 2.

O Find the DAQ Signal Accessory and visually confirm that it is
connected to the DAQ device in your computer.

Q Using a wire, connect the Analog In Channel 1 to the Sine Function
Generator, as shown in Figure 2-36.

O Set the Frequency Range switch and the Frequency Adjust knob
to their lowest levels.

Power ‘7NAT|ONAL A B
o ' INSTRUMENTS Quadrature AU =~ 2 Relay DIO 5
Encoder B L 200mA Max
©) % % (ﬁ@ 0 Y
o= eo| | oo % % g0 |0 7
(‘ LN LN)
) § § <l o vo|le 24 Pulsesirev (L'j—_IE 00—
SRR E ag |0—
?D—: § § wilee .o E Digital Trigger ("j__@ 0
= .) ee (A
g [[]I33 Cllee| |0l Digital Port 0 ag (0—
S . ° = o0 o e Rs} |
SRR 0000 (T« [0
EEL e $) e |5 3 2 1 0 (ujTl_@ O —
3 § § S|l e R Frequency Frequency Counters
e NIl oo o0 g_ Range Adjust
s S| e o I 13kHz-1MHz
I S| el |IB 1kHz-100kHz|;| @
b I I 100Hz-10kHz Lo i
.. .. Analog Analog Function Temp Sensor
s o Out In_ Generator Noise
Q) O Qg OF O Off On
el =TT EE
O Temp Sensor
DAQ C oIRoICcoPp V*100:°C@

Mic Ch 6 Signal Accessory Ch 0 1 1W\/\ Cho

Figure 2-36. Connection for the DAQ Signal Accessory
2. Open LabVIEW.

3. Open a blank VL

LabVIEW Introduction Course Manual 2-54 ni.com

Lesson2 Navigating LabVIEW

Save the VI as Simple AAP.vi.
O Select File»Save.

O Navigate to the C: \Exercises\LabVIEW Basics I\
Simple AAP directory.

O Name the VI Simple AAP.vi.

Q Click OK.

In the following steps, you will build a front panel window similar to the one
in Figure 2-37.

‘W'aveform Graph

Average Value
]

Plat 0 g

10-
F.a-
5_

Amplitude

. [
(o B T = |
[DR |

1
=
o

[

I
100

=
)
[

© National Instruments Corporation

Figure 2-37. Acquire, Analyze and Present Front Panel Window

Add a waveform graph to the front panel window to display the acquired
data.

O If the Controls palette is not already open, select View»Controls
Palette from the LabVIEW menu.

d On the Controls palette, select the Express category.

O Select the Graph Indicators category from within the Express
category.

O Select the waveform graph.

O Add the graph to the front panel window.

2-55 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

6. Add a numeric indicator to the front panel to display the average value.

O Collapse the Graph Indicators category by selecting Express on

the Controls palette.

O Select the Numeric Indicators category from within the Express

category.
4 Select the numeric indicator.
O Place the indicator on the front panel.
U Enter Average Value in the label of the numeric indicator.

In the following steps, you build a block diagram similar to the one in

Figure 2-38.
analyze Data Present Daka
L3 L
3 ’ . i
DA Assiskank Stakiskics
data i e Signals Average Value
Arithretic Mean Hpeeesesesoooooenkk
W'aveform Graph
! [
L
L3
: '
L4
* L
Write To
Measurement File
Sigrals

Figure 2-38. Acquire, Analyze, and Present Block Diagram
7. Open the block diagram of the VI.

4 Select Window»Show Block Diagram.

@ Note The terminals corresponding to the new front panel window objects appear on the

block diagram.

LabVIEW Introduction Course Manual 2-56

ni.com

Lesson2 Navigating LabVIEW

8. Acquire a sine wave for 0.1 seconds. If you have hardware installed,
follow the instructions in the Hardware Installed column to acquire the
data using the DAQ Assistant. If you do not have hardware installed,
follow the instructions in the No Hardware Installed column to
simulate the acquisition using the Simulate Signal Express VI.

Hardware Installed No Hardware Installed

On the Functions palette, select the Express | On the Functions palette, select the Express

category. category.

Select Input from the Express category. Select Input from the Express category.

Select the DAQ Assistant from the Input Select Simulate Signal from the Input

category. category.

Place the DAQ Assistant on the block diagram. | Place the Simulate Signal Express VI on the
block diagram.

Wait for the DAQ Assistant dialog box to open. | Wait for the Simulate Signal dialog box to
open.

Select Analog Input»Voltage for the Select Sine for the signal type.

measurement type.

Select ail (analog input channel 1) for the Set the signal frequency to 100.

physical channel.

Click the Finish button. In the Timing section, set the Samples per

second (Hz) to 1000.

On the Task Timing tab select N Samples as In the Timing section, deselect Automatic for

the Acquisition Mode. the Number of samples.

In the Clock Settings section enter 100 in In the Timing section, set the Number of

Samples To Read. samples to 100.

Enter 1000 in Rate (Hz). Select the Simulate acquisition timing
selection.

Click the OK button. Click the OK button.

@ Tip Reading 100 samples at a rate of 1,000 Hz retrieves 0.1 seconds worth of data.

9. Determine the average value of the data acquired by using the Statistics
Express VI.

4 Collapse the Input palette by selecting Input on the Functions
palette.

© National Instruments Corporation 2-57 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

10.

Select the Signal Analysis palette.

O Select the Statistics Express VI and add the Statistics Express VI to

the block diagram to the right of the DAQ Assistant.
Wait for the Statistics Express VI dialog box to open.
Place a checkmark in the Arithmetic mean checkbox.

Click OK.

Log the generated sine data to a LabVIEW Measurement File.

Q
Q
Q
Q
Q

Q

Q

Select Express on the Functions palette.
Select the Output category.
Select Write to Measurement File.

Add the Write to Measurement File Express VI to the block diagram
below the Statistics Express VI.

Wait for the Write to Measurement File Express VI dialog box to
open.

Leave all settings as default.

Click OK.

@ Note Future exercises do not detail the directions for finding specific functions or
controls in the palettes. Use the palette search feature to locate functions and controls.

11. Wire the data from the DAQ Assistant (or Simulate Signal Express VI)
to the Statistics Express V1.

LabVIEW Introduction Course Manual

Q

Place the mouse cursor over the data output of the DAQ Assistant
(or Simulate Signal Express VI) at the location where the cursor
changes to the Wiring tool.

Click the mouse button to start the wire.

O Place the mouse cursor over the Signals input of the Statistics

Express VI and click the mouse button to end the wire.

2-58 ni.com

Lesson2 Navigating LabVIEW

12. Wire the data to the graph indicator.

O Place the mouse cursor over the data output wire of the DAQ
Assistant (or Simulate Signal Express VI) at the location where the
cursor changes to the Wiring tool.

U Click the mouse button to start the wire.

U Place the mouse cursor over the graph indicator and click the mouse
button to end the wire.

13. Wire the Arithmetic Mean output of the Statistics Express VI to the
Average Value numeric indicator.

O Place the mouse cursor over the Arithmetic Mean output of the
Statistics Express VI at the location where the cursor changes to the
Wiring tool.

U Click the mouse button to start the wire.

O Place the mouse cursor over the Average Value numeric indicator
and click the mouse button to end the wire.

14. Wire the data output to the Signals input of the Write Measurement File
Express VI.

U Place the mouse cursor over the data output wire of the DAQ
Assistant (or Simulate Signal Express VI) at the location where the
cursor changes to the Wiring tool.

[Click the mouse button to start the wire.
O Place the mouse cursor over the Signals input of the Write

Measurement File Express VI and click the mouse button to end the
wire.

@ Note Future exercises do not detail the directions for wiring between objects.

15. Save the VI.

© National Instruments Corporation 2-59 LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Testing
1. Switch to the front panel window of the VI.

2. Set the graph properties to be able to view the sine wave.

O Right-click the waveform graph and select X Scale»Autoscale X to
deselect autoscaling.

O Right-click the waveform graph and select Visible Items»X
Scrollbar.

Q Use the labeling tool to change the last number on the X Scale of the
waveform graph to . 1.

3. Save the VL
4. Run the VI.
U Click the Run button on the front panel toolbar.

The graph indicator should display a sine wave and the Average Value
indicator should display a number around zero. If the VI does not run as
expected, review the implementation steps.

5. Close the VI.

End of Exercise 2-5

LabVIEW Introduction Course Manual 2-60 ni.com

Lesson 2

Self-Review: Quiz

Navigating LabVIEW

Refer to Figure 2-39 to answer the following quiz questions.

Murmber 1 Recult 1
: sl
[b
Mumber 2
¥
Murnber 5 5lnE - Resulk 2
! I> » 3
=5 TH
Mumber ¢

k

© National Instruments Corporation

Figure 2-39. Dataflow Questions

Which of the following functions execute first?
a. Add

b. Subtract

¢. Unknown

Which of the following functions execute first?
a. Sine

b. Divide

Which following functions executes first?
a. Random Number

b. Divide

c. Add

d. Unknown

Which following functions execute last?
a. Random Number

b. Subtract

c. Add

d. Unknown

What are the three parts of a VI?

a. Front panel window

b. Block diagram window

c. Project

d. Icon/connector pane

2-61

LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-62 ni.com

Lesson 2

Self-Review: Quiz Answers

Navigating LabVIEW

Murmber 1 Recult 1
: sl
[b
Mumber 2
¥
Murnber 5 5lnE - Resulk 2
! I> » 3
=5 TH
Mumber ¢

k

© National Instruments Corporation

Which of the following functions execute first?
a. Add

b. Subtract

¢. Unknown

Which of the following functions execute first?
a. Sine

b. Divide

¢. Unknown

Which following functions executes first?
a. Random Number

b. Divide

c. Add

d. Unknown

Which following functions execute last?
a. Random Number

b. Subtract

c. Add

d. Unknown

What are the three parts of a VI?

a. Front panel window

b. Block diagram window

c. Project

d. Icon/connector pane

2-63

LabVIEW Introduction Course Manual

Lesson2 Navigating LabVIEW

Notes

LabVIEW Introduction Course Manual 2-64 ni.com

Troubleshooting and Debugging Vis

To run a VI, you must wire all the subVls, functions, and structures with the
correct data types for the terminals. Sometimes a VI produces data or runs
in a way you do not expect. You can use LabVIEW to configure how a VI
runs and to identify problems with block diagram organization or with the
data passing through the block diagram.

Topics

LabVIEW Help Utilities
Correcting Broken VIs
Debugging Techniques
Undefined or Unexpected Data

moaw»

Error Checking and Error Handling

© National Instruments Corporation 3-1 LabVIEW Introduction Course Manual

Lesson 3 Troubleshooting and Debugging VIs

A. LabVIEW Help Utilities

Use the Context Help window, the LabVIEW Help, and the NI Example
Finder to help you create and edit VIs. Refer to the LabVIEW Help and
manuals for more information about LabVIEW.

Context Help Window

The Context Help window displays basic information about LabVIEW
objects when you move the cursor over each object. To toggle display of the
Context Help window select Help»Show Context Help, press the
<Citrl-H> keys, or click the Show Context Help Window button on the
toolbar.

When you move the cursor over front panel and block diagram objects, the
Context Help window displays the icon for subVIs, functions, constants,
controls, and indicators, with wires attached to each terminal. When you
move the cursor over dialog box options, the Context Help window
displays descriptions of those options.

In the Context Help window, the labels of required terminals appear bold,
recommended terminals appear as plain text, and optional terminals appear
dimmed. The labels of optional terminals do not appear if you click the Hide
Optional Terminals and Full Path button, shown as follows, in the
Context Help window.

Context Help =
Read From Spreadsheet File.vi o
Format (%%, 3F) 1] new File path (Mot & Pathi...
file path {dialog if empky) oy all rows
number of rows (alli-1) - - .I:':|:“ ETE First row
_L o el L mark after read {chars.)
transl:u:lse (I'ID:F) [I EOF?

Reads a specified number of lines or rows from a numeric bext File beginning at

a specified character offset and converts the data to a 20, single-precision

array of numbers,

Detailed help -~

1?' (] I ?I < »

Figure 3-1. Context Help Window

Click the Hide Optional Terminals and Full Path button located on the
lower left corner of the Context Help window to display the optional
terminals of a connector pane and to display the full path to a VI. Optional
terminals are shown by wire stubs, informing you that other connections
exist. The detailed mode displays all terminals, as shown in Figure 3-2.

LabVIEW Introduction Course Manual 3-2 ni.com

Lesson 3 Troubleshooting and Debugging Vs

Context Help

d [

C:h...ments' Lab¥IEW 8.0% vi.lib\ Utility" file.llb" Read From Spreadsheet File.vi

fForrmat [%%.3F) i} new file path (Mot & Path ...
file path [dialog if empky) all Fows
number of rows (alli-13 - [\EEE Firsk row
start of read offset (chars. .. ﬂ = L mark after read {chars.)
max charactersfrow {na lim. .. ‘
tI’EII'ISFIl:ISE |:I'|CI:F:| R |
delimiter (3t

Reads a specified number of lines or rows from a numeric text file beqginning at a
specified character offset and converts the data to a 20, single-precision array of
numbers,

Detailed help -~

[E[a2]< 2] i
Figure 3-2. Detailed Context Help Window

@ Click the Lock Context Help button to lock the current contents of the
Context Help window. When the contents are locked, moving the cursor
over another object does not change the contents of the window. To unlock
the window, click the button again. You also can access this option from the
Help menu.

If a corresponding LabVIEW Help topic exists for an object the Context
Help window describes, a blue Click here for more help link appears in the

Context Help window. Also, the More Help button is enabled. Click the
. link or the button to display the LabVIEW Help for more information about
the object.
LabVIEW Help

You can access the LabVIEW Help either by clicking the More Help button
in the Context Help window, selecting Help»Search the LabVIEW Help,
or clicking the blue Click here for more help link in the Context Help
window. You also can right-click an object and select Help from the shortcut
menu.

The LabVIEW Help contains detailed descriptions of most palettes, menus,
tools, VIs, and functions. The LabVIEW Help also includes step-by-step
instructions for using LabVIEW features. The LabVIEW Help includes links
to the following resources:

* LabVIEW Documentation Resources, which describes online and print
documents to help new and experienced users, which includes PDF
versions of all LabVIEW manuals.

* Technical support resources on the National Instruments Web site, such
as the NI Developer Zone, the KnowledgeBase, and the Product
Manuals Library.

© National Instruments Corporation 3-3 LabVIEW Introduction Course Manual

Lesson 3

NI Example Finder

Troubleshooting and Debugging VIs

The New dialog box contains many LabVIEW template VIs that you can use
to start creating VIs. However, these template VIs are only a subset of the
hundreds of example VIs included with LabVIEW. You can modify any
example VI to fit an application, or you can copy and paste from an example
into a VI that you create.

In addition to the example VIs that ship with LabVIEW, you also can access
hundreds of example VIs on the NI Developer Zone at ni.com/zone.

To search all examples using LabVIEW Vs, use the NI Example Finder.
The NI Example Finder is the gateway to all installed examples and the
examples located on the NI Developer Zone.

To launch the NI Example Finder, select Help»Find Examples. You also
can launch the NI Example Finder by selecting Find Examples in the
Getting Started dialog box.

A NI Example Finder g
Bronse Search | Submit Double-click an example to open it. Information
| Analyzing and Processing Signals -
Browse according to: =] Building User Interfaces
(@) Task =) Communicating with External Applications
- —.] Favorites
4 Directory Struckure =] Fundamentals
=] Hardware Input and Qutput
=) Industry Applications
[T
= LabVIEW Zone . Most Recent
CONMECT TO YOUR COMMUNITY) Netwarking
~) Optimizing Applications
- g::';"u ﬁ Articlas) Printing and Publishing Data
=) Pragrammatically Cantrolling Y1s
"w@ E":.:E;ssiun 05 Rasources =) Toolkits and Modules
=) Toolkits and Modules Mat Installed
& Code Sz, || User 1
< Sharing Pg& Groups il
g Sturant i
3 Firer Requirements
Wisit LabYIEW Zone
[1nclude rii.com examples
. ni.com query timeout
Hardware
Mo hardware chosen v
[Limit: results to hardware Add to Favorites [Setup,..] [Help] [Close]
Figure 3-3. NI Example Finder
LabVIEW Introduction Course Manual 3-4 ni.com

Lesson 3 Troubleshooting and Debugging Vs

Exercise 3-1 Concept: Using Help

Goal

Become familiar with using the Context Help window, the LabVIEW Help,
and the NI Example Finder.

Description

This exercise consists of a series of tasks designed to help you become
familiar with the LabVIEW Help tools. Complete the following steps.

NI Example Finder

1. You have a GPIB device in your computer, and you want to learn how to
communicate with it using LabVIEW. Use the NI Example Finder to
find a VI that communicates with a GPIB device.

Q

Q
Q
Q

U

Q

Q

Open LabVIEW.
Select Help»Find Examples to open the NI Example Finder.
Confirm that the Task option is selected on the Browse tab.

Double-click the Hardware Input and Output task to find
examples related to hardware input and output.

Double-click the GPIB task.
Select the VI shown in this directory.

Notice that a description of the VI is provided in the Information
window so that you can verify that this VI meets your needs.

Double-click the VI name to open the VI.

Close the VI after you finish exploring it.

2. You want to learn more about Express VlIs, especially their use in
filtering signals. Use the NI Example Finder to find an appropriate VI.

Q

Q

Q

© National Instruments Corporation

The NI Example Finder should still be open from the previous step.
If not, open the NI Example Finder.

Click the Search tab in the NI Example Finder.

Enter express in the Enter keyword(s) field to find VIs that
contain Express VIs.

3-5 LabVIEW Introduction Course Manual

Lesson 3 Troubleshooting and Debugging VIs

Q

Q

Q

Double-click the Express result that appears in the Double-click
keyword(s) field.

This keyword is associated with many example VIs, as demonstrated
by the number of VIs returned. You can select any one of these VIs
and read the description in the Information window.

Double-click Express Filter.vi to open it.

Context Help Window

3. Use the Context Help window to learn about the Express VIs used in
the Express Filter VI.

LabVIEW Introduction Course Manual

Q

Q

Open the block diagram by selecting Window»Show Block
Diagram.

Open the Context Help window by selecting Help»Show Context
Help.

Move the Context Help window to a convenient area where the
window does not hide part of the block diagram.

Place your mouse cursor over the Simulate Signal Express VI. The
Context Help window content changes to show information about
the object that your mouse is over.

Move your mouse over another Express VI. Notice the Context
Help window content changes corresponding to the location of the
mouse cursor.

Move your mouse over one of the Tone Measurements Express VIs.

Examine the configuration details in the Context Help window.
This gives you the information about how the Express VI is
configured.

Double-click the Tone Measurements Express VI to open the
configuration dialog box. Notice that the selections in the
configuration dialog box match the information in the Context Help
window.

Click the OK button to close the configuration dialog box.

3-6 ni.com

Lesson 3 Troubleshooting and Debugging Vs

4. Anchor the Context Help window so that you can move your mouse
without the contents of the window changing. The Context Help
window should show information about the Simulate Signal Express VI.

Q

@ Q

Move your mouse over the Simulate Signal Express VI.

To anchor the context help window, select the Loock button in the
lower left corner of the window.

@ Tip If the contents of the window change before you lock the window, avoid passing

your mouse over other objects on the way to the Context Help window. Move the
window closer to the object of interest to view Context Help for that item.

Q

Q

Move your mouse over another object. Notice the contents of the
window do not change while the Lock button is selected.

Deselect the Lock button to resume normal operation of the window.

5. Modify the Description and Tip associated with the Simulated
frequency control to change the content shown in the Context Help
window.

Q

U 0O 0 U 0

Select Window»Show Front Panel to open the front panel of
the VI.

Move your mouse over the Simulated frequency control.
Read the contents of the Context Help window.
Right-click the Simulated frequency control.

Select Description and Tip from the shortcut menu.

Replace the text in the "Simulated frequency'' Description box
with the text This is the description of the control.

Replace the text in the "Simulated frequency'' Tip box with the
text This is the tip for the control.

Click the OK button.

Q Move your mouse over the Simulated frequency control.

© National Instruments Corporation

Notice that the contents of the Context Help window changed to
match the text you typed in the Description field of the Description
and Tip dialog box.

Run the VI.

3-7 LabVIEW Introduction Course Manual

Lesson 3 Troubleshooting and Debugging VIs

Q Place your mouse cursor over the Simulated frequency control.

O Notice that the tool tip that appears matches the text you typed in the
Tip field of the Description and Tip dialog box.

Q Click the Stop button.

LabVIEW Help
6. Use the LabVIEW Help to learn more information about the Filter
Express VI.

Q Select Window»Show Block Diagram to open the block diagram
of the Express Filter VI.

Q Right-click the Filter Express VI and select Help from the shortcut
menu. This opens the LabVIEW Help topic for the Filter Express VI.

@ Note To access the LabVIEW Help for this topic, you can also select the Detailed Help
link in the Context Help window while the Filter Express VI is selected, or click the
question mark in the Context Help window.

U Explore the topic. For example, what is the purpose of the Phase
Response dialog box option?

Q Close the LabVIEW Help window.

7. Close the Express Filter VI when you finish. Do not save changes.

End of Exercise 3-1

LabVIEW Introduction Course Manual 3-8 ni.com

Lesson 3 Troubleshooting and Debugging Vs

B. Correcting Broken Vis

If a VI does not run, it is a broken, or nonexecutable, VI. The Run button
appears broken, shown below, when the VI you are creating or editing
contains errors.

If the button still appears broken when you finish wiring the block diagram,
the VI is broken and cannot run.

Finding Causes for Broken Vls

Warnings do not prevent you from running a VI. They are designed to help
you avoid potential problems in VIs. Errors, however, can break a VI. You
must resolve any errors before you can run the VI.

Click the broken Run button or select View»Error List to find out why a
Vl1is broken. The Error list window lists all the errors. The Items with
errors section lists the names of all items in memory, such as VIs and
project libraries that have errors. If two or more items have the same name,
this section shows the specific application instance for each item. The
errors and warnings section lists the errors and warnings for the VI you
select in the Items with errors section. The Details section describes the
errors and in some cases recommends how to correct the errors. Click the
Help button to display a topic in the LabVIEW Help that describes the error
in detail and includes step-by-step instructions for correcting the error.

Click the Show Error button or double-click the error description to
highlight the area on the block diagram window or front panel window that
contains the error.

© National Instruments Corporation 3-9 LabVIEW Introduction Course Manual

Lesson 3 Troubleshooting and Debugging VIs

13 Error list E]@

Items with errors

Untitled 2 ry
[

2 errors and warnings Show Warnings
@ Block Diagram Errars |

‘You have connected two terminals of different bypes.
hile Loop: conditional kerminal is nok wired

Dietails

These cannat be wired together because their data bypes {numeric, string, array, cluster, |
etc.) do not match. Show the Context Help window to see what data type is required. B |
The type of the source is double [64-bit real {~15 digit precision)].

The type of the sink is cluster of 3 elements.,

[Close] I Show Error] [Help]

Figure 3-4. Example of the Error List Dialog Box

Common Causes of Broken Vis

The following list contains common reasons why a VI is broken while you
edit it:

LabVIEW Introduction Course Manual

The block diagram contains a broken wire because of a mismatch of data
types or a loose, unconnected end.

Refer to the Correcting Broken Wires topic of the LabVIEW Help for
information about correcting broken wires.

A required block diagram terminal is unwired.

Refer to the Using Wires to Link Block Diagram Objects topic of the
LabVIEW Help, for information about setting required inputs and
outputs.

A subVlI is broken or you edited its connector pane after you placed its
icon on the block diagram of the VI.

Refer to the Creating SubVls topic of the LabVIEW Help for information
about subVIs.

3-10 ni.com

Lesson 3 Troubleshooting and Debugging Vs

C. Debugging Techniques

If a VI is not broken, but you get unexpected data, you can use the following
techniques to identify and correct problems with the VI or the block diagram
data flow:

© National Instruments Corporation

Wire the error in and error out parameters at the bottom of most
built-in VIs and functions. These parameters detect errors encountered
in each node on the block diagram and indicate if and where an error
occurred. You also can use these parameters in the VIs you build.

Triple-click the wire with the Operating tool to highlight its entire path
and to ensure that the wires connect to the proper terminals.

Use the Context Help window to check the default values for each
function and subVI on the block diagram. VIs and functions pass default
values if recommended or optional inputs are unwired. For example, a
Boolean input might be set to TRUE if unwired.

Use execution highlighting to watch the data move through the block
diagram.

Single-step through the VI to view each action of the VI on the block
diagram.

Use the Probe tool to observe intermediate data values and to check the
error output of VIs and functions, especially those performing 1/O.

Use breakpoints to pause execution, so you can single-step or insert
probes.

Suspend the execution of a subVI to edit values of controls and
indicators, to control the number of times it runs, or to go back to the
beginning of the execution of the subVI.

Determine if the data that one function or subVI passes is undefined.
This often happens with numbers. For example, at one point in the VI an
operation could have divided a number by zero, thus returning Inf
(infinity), whereas subsequent functions or subVIs were expecting
numbers.

If the VI runs more slowly than expected, confirm that you turned off
execution highlighting in subVlIs. Also, close subVI front panel
windows and block diagram windows when you are not using them
because open windows can affect execution speed.

Check the representation of controls and indicators to see if you are
receiving overflow because you converted a floating-point number to an
integer or an integer to a smaller integer. For example, you might wire a
16-bit integer to a function that only accepts 8-bit integers. This causes
the function to convert the 16-bit integer to an 8-bit representation,
potentially causing a loss of data.

3-11 LabVIEW Introduction Course Manual

Lesson 3

Troubleshooting and Debugging VIs

Determine if any For Loops inadvertently execute zero iterations and
produce empty arrays.

Verify you initialized shift registers properly unless you intend them to
save data from one execution of the loop to another.

Check the cluster element order at the source and destination points.
LabVIEW detects data type and cluster size mismatches at edit time, but
it does not detect mismatches of elements of the same type.

Check the node execution order.

Check that the VI does not contain hidden subVIs. You inadvertently
might have hidden a subVI by placing one directly on top of another
node or by decreasing the size of a structure without keeping the subVI
in view.

Execution Highlighting

View an animation of the execution of the block diagram by clicking the
Highlight Execution button, shown as follows.

Execution highlighting shows the movement of data on the block diagram
from one node to another using bubbles that move along the wires. Use
execution highlighting in conjunction with single-stepping to see how data
values move from node to node through a VI.

5

Note

Execution highlighting greatly reduces the speed at which the VI runs.

{3 addgsub.vi Block Dagram * E]@
File Edit Miew Project Operate Tools ‘Window Help ey
#[@][@n o
A
a #Add a+h
o S -~
b Subtract a-hb
7,60 - 1275 i]
o
[[<] >

LabVIEW Introduction Course Manual

Figure 3-5. Example of Execution Highlighting in Use

3-12 ni.com

Lesson 3 Troubleshooting and Debugging Vs

Single-Stepping
Single-step through a VI to view each action of the VI on the block diagram

as the VI runs. The single-stepping buttons, shown as follows, affect
execution only in a VI or subVI in single-step mode.

ba =g off

Step Into Step Over Step Out

Enter single-step mode by clicking the Step Over or Step Into button on the
block diagram toolbar. Move the cursor over the Step Over, Step Into, or
Step Out button to view a tip strip that describes the next step if you click
that button. You can single-step through subVlIs or run them normally.

If you single-step through a VI with execution highlighting on, an execution
glyph, shown as follows, appears on the icons of the subVIs that are
currently running.

Ak

Mon |§

Probe Tools

Use the Probe tool, shown as follows, to check intermediate values on a wire
as a VI runs.

Use the Probe tool if you have a complicated block diagram with a series of
operations, any one of which might return incorrect data. Use the Probe tool
with execution highlighting, single-stepping, and breakpoints to determine
if and where data is incorrect. If data is available, the probe immediately
updates during single-stepping or when you pause at a breakpoint. When
execution pauses at a node because of single-stepping or a breakpoint, you
also can probe the wire that just executed to see the value that flowed
through that wire.

Types of Probes

You can check intermediate values on a wire when a VI runs by using a
generic probe, by using an indicator on the Controls palette to view the data,
by using a supplied probe, by using a customized supplied probe, or by
creating a new probe.

© National Instruments Corporation 3-13 LabVIEW Introduction Course Manual

Lesson 3

Troubleshooting and Debugging VIs

Generic

Use the generic probe to view the data that passes through a wire.
Right-click a wire and select Custom Probe»Generic Probe from the
shortcut menu to use the generic probe.

The generic probe displays the data. You cannot configure the generic probe
to respond to the data.

LabVIEW displays the generic probe when you right-click a wire and select
Probe, unless you already specified a custom or supplied probe for the data

type.

You can debug a custom probe similar to a VI. However, a probe cannot
probe its own block diagram, nor the block diagram of any of its subVIs.
When debugging probes, use the generic probe.

Using Indicators to View Data

You also can use an indicator to view the data that passes through a wire. For
example, if you view numeric data, you can use a chart within the probe to
view the data. Right-click a wire, select Custom Probe»Controls from the
shortcut menu, and select the indicator you want to use. You also can click
the Select a Control icon on the Controls palette and select any custom
control or type definition saved on the computer or in a shared directory on
a server. LabVIEW treats type definitions as custom controls when you use
them to view probed data.

If the data type of the indicator you select does not match the data type of
the wire you right-clicked, LabVIEW does not place the indicator on the
wire.

Supplied

Supplied probes are VIs that display comprehensive information about the
data that passes through a wire. For example, the VI Refnum Probe returns
information about the VI name, the VI path, and the hex value of the
reference. You also can use a supplied probe to respond based on the data
that flows through the wire. For example, use an Error probe on an error
cluster to receive the status, code, source, and description of the error and
specify if you want to set a conditional breakpoint if an error or warning
occurs.

The supplied probes appear at the top of the Custom Probe shortcut menu.
Right-click a wire and select Custom Probe from the shortcut menu to
select a supplied probe. Only probes that match the data type of the wire you
right-click appear on the shortcut menu.

LabVIEW Introduction Course Manual 3-14 ni.com

Lesson 3 Troubleshooting and Debugging Vs

Refer to the Using Supplied Probes VI in the 1abview\examples\
general\probes.11b for an example of using supplied probes.

Custom

Use the Custom Probe Wizard to create a probe based on an existing probe
or to create a new probe. Right-click a wire and select Custom Probe»New
from the shortcut menu to display the Custom Probe Wizard. Create a probe
when you want to have more control over how LabVIEW probes the data
that flows through a wire. When you create a new probe, the data type of the
probe matches the data type of the wire you right-clicked. If you want to edit
the probe you created, you must open it from the directory where you
saved it.

After you select a probe from the Custom Probe shortcut menu, navigate to
it using the Select a Control palette button or create a new probe using the
Custom Probe Wizard. That probe becomes the default probe for that data
type, and LabVIEW loads that probe when you right-click a wire and select
Probe from the shortcut menu. LabVIEW only loads probes that exactly
match the data type of the wire you right-click. That is, a double-precision,
floating-point numeric probe cannot probe a 32-bit unsigned integer wire
even though LabVIEW can convert the data.

@ Note If you want a custom probe to be the default probe for a particular data type, save
the probe in the user.1ib_probes\default directory. Do not save probes in the
vi.lib_probes directory because LabVIEW overwrites those files when you
upgrade or reinstall.

Breakpoints

Use the Breakpoint tool, shown as follows, to place a breakpoint on a VI,
node, or wire on the block diagram and pause execution at that location.

When you set a breakpoint on a wire, execution pauses after data passes
through the wire. Place a breakpoint on the block diagram to pause
execution after all nodes on the block diagram execute.

When a VI pauses at a breakpoint, LabVIEW brings the block diagram to
the front and uses a marquee to highlight the node or wire that contains the
breakpoint. When you move the cursor over an existing breakpoint, the
black area of the Breakpoint tool cursor appears white.

© National Instruments Corporation 3-15 LabVIEW Introduction Course Manual

Lesson 3 Troubleshooting and Debugging VIs

When you reach a breakpoint during execution, the VI pauses and the Pause
button appears red. You can take the following actions:

* Single-step through execution using the single-stepping buttons.
* Probe wires to check intermediate values.
* Change values of front panel controls.

* Click the Pause button to continue running to the next breakpoint or
until the VI finishes running.

Suspending Execution

Suspend execution of a subVI to edit values of controls and indicators, to
control the number of times the subVI runs before returning to the caller, or
to go back to the beginning of the execution of the subVI. You can cause all
calls to a subVI to start with execution suspended, or you can suspend a
specific call to a subVI.

To suspend all calls to a subVI, open the subVI and select Operate»
Suspend when Called. The subVI automatically suspends when another VI
calls it. If you select this menu item when single-stepping, the subVI does
not suspend immediately. The subVI suspends when it is called.

To suspend a specific subVI call, right-click the subVI node on the block
diagram and select SubVI Node Setup from the shortcut menu. Place a
checkmark in the Suspend when called checkbox to suspend execution
only at that instance of the subVI.

The VI Hierarchy window, which you display by selecting File»VI
Hierarchy, indicates whether a VI is paused or suspended. An arrow glyph,
shown as follows, indicates a VI that is running regularly or single-stepping.

+

A pause glyph, shown as follows, indicates a paused or suspended V1.

A green pause glyph, or a hollow glyph in black and white, indicates a VI
that pauses when called. A red pause glyph, or a solid glyph in black and
white, indicates a VI that is currently paused. An exclamation point glyph,
shown as follows, indicates that the subVI is suspended.

A VI can be suspended and paused at the same time.

LabVIEW Introduction Course Manual 3-16 ni.com

Lesson 3 Troubleshooting and Debugging Vs

Determining the Current Instance of a SubVI

When you pause a subVI, the Call list pull-down menu on the toolbar lists
the chain of callers from the top-level VI down to the subVI. This list is not
the same list you see when you select Browse»This VI's Callers, which
lists all calling VIs regardless of whether they are currently running. Use the
Call list menu to determine the current instance of the subVI if the block
diagram contains more than one instance. When you select a VI from the
Call list menu, its block diagram opens, and LabVIEW highlights the
current instance of the subVI.

© National Instruments Corporation 3-17 LabVIEW Introduction Course Manual

Lesson 3

Troubleshooting and Debugging VIs

D. Undefined or Unexpected Data

Undefined data, which are NaN (not a number) or Inf (infinity), invalidate
all subsequent operations. Floating-point operations return the following
two symbolic values that indicate faulty computations or meaningless
results:

* NaN (not a number) represents a floating-point value that invalid
operations produce, such as taking the square root of a negative number.

* Inf (infinity) represents a floating-point value that valid operations
produce, such as dividing a number by zero.

LabVIEW does not check for overflow or underflow conditions on integer
values. Overflow and underflow for floating-point numbers is in accordance
with IEEE 754, Standard for Binary Floating-Point Arithmetic.

Floating-point operations propagate NaN and Inf reliably. When you
explicitly or implicitly convert NaN or Inf to integers or Boolean values, the
values become meaningless. For example, dividing 1 by zero produces Inf.
Converting Inf to a 16-bit integer produces the value 32,767, which appears
to be a normal value.

Before you convert data to integer data types, use the Probe tool to check
intermediate floating-point values for validity. Check for NaN by wiring the
Comparison function, Not A Number/Path/Refnum?, to the value you
suspect is invalid.

Do notrely on special values such as NaN, Inf, or empty arrays to determine
if a VI produces undefined data. Instead, confirm that the VI produces
defined data by making the VI report an error if it encounters a situation that
is likely to produce undefined data.

For example, if you create a VI that uses an incoming array to auto-index a
For Loop, determine what you want the VI to do when the input array is
empty. Either produce an output error code, substitute defined data for the
value that the loop creates, or use a Case structure that does not execute the
For Loop if the array is empty.

LabVIEW Introduction Course Manual 3-18 ni.com

Lesson 3 Troubleshooting and Debugging Vs

E. Error Checking and Error Handling

No matter how confident you are in the VI you create, you cannot predict
every problem a user can encounter. Without a mechanism to check for
errors, you know only that the VI does not work properly. Error checking
tells you why and where errors occur.

Automatic Error Handling

Each error has a numeric code and a corresponding error message.

By default, LabVIEW automatically handles any error when a VI runs by
suspending execution, highlighting the subVI or function where the error
occurred, and displaying an error dialog box.

To disable automatic error handling for the current VI, select File»VI
Properties and select Execution from the Category pull-down menu. To
disable automatic error handling for any new, blank VIs you create, select
Tools»Options and select Block Diagram from the Category list. To
disable automatic error handling for a subVI or function within a VI, wire
its error out parameter to the error in parameter of another subVI or
function or to an error out indicator.

Manual Error Handling

You can choose other error handling methods. For example, if an I/O VI on
the block diagram times out, you might not want the entire application to
stop and display an error dialog box. You also might want the VI to retry for
a certain period of time. In LabVIEW, you can make these error handling
decisions on the block diagram of the VI.

Use the LabVIEW error handling VIs and functions on the Dialog & User
Interface palette and the error in and error out parameters of most VIs and
functions to manage errors. For example, if LabVIEW encounters an error,
you can display the error message in different kinds of dialog boxes. Use error
handling in conjunction with the debugging tools to find and manage errors.

VIs and functions return errors in one of two ways—with numeric error
codes or with an error cluster. Typically, functions use numeric error codes,
and VIs use an error cluster, usually with error inputs and outputs.

When you perform any kind of input and output (I/O), consider the
possibility that errors might occur. Almost all I/O functions return error
information. Include error checking in VIs, especially for I/O operations
(file, serial, instrumentation, data acquisition, and communication), and
provide a mechanism to handle errors appropriately.

© National Instruments Corporation 3-19 LabVIEW Introduction Course Manual

Lesson 3

Troubleshooting and Debugging VIs

Use the LabVIEW error handling VIs, functions, and parameters to manage
errors. For example, if LabVIEW encounters an error, you can display the
error message in a dialog box. Or you can fix the error programmatically
then erase the error by wiring the error out output of the subVI or function
to the error in input of the Clear Errors VI. Use error handling in conjunction
with the debugging tools to find and manage errors. National Instruments
strongly recommends using error handling.

Error Clusters

Use the error cluster controls and indicators to create error inputs and
outputs in subVls.

The error in and error out clusters include the following components of
information:

* status is a Boolean value that reports TRUE if an error occurred.

* code is a 32-bit signed integer that identifies the error numerically. A
nonzero error code coupled with a status of FALSE signals a warning
rather than a error.

* source is a string that identifies where the error occurred.

Error handling in LabVIEW follows the dataflow model. Just as data values
flow through a VI, so can error information. Wire the error information from
the beginning of the VI to the end. Include an error handler VI at the end of the
VI to determine if the VI ran without errors. Use the error in and error out
clusters in each VI you use or build to pass the error information through the VI.

As the VI runs, LabVIEW tests for errors at each execution node. If
LabVIEW does not find any errors, the node executes normally. If
LabVIEW detects an error, the node passes the error to the next node
without executing that part of the code. The next node does the same thing,
and so on. At the end of the execution flow, LabVIEW reports the error.

Explain Error

When an error occurs, right-click within the cluster border and select
Explain Error from the shortcut menu to open the Explain Error dialog
box. The Explain Error dialog box contains information about the error.
The shortcut menu includes an Explain Warning option if the VI contains
warnings but no errors.

You also can access the Explain Error dialog box from the Help»Explain
Error menu.

VIs and functions return errors in one of two ways—with numeric error
codes or with an error cluster. Typically, functions use numeric error codes,
and VIs use an error cluster, usually with error inputs and outputs.

LabVIEW Introduction Course Manual 3-20 ni.com

Lesson 3 Troubleshooting and Debugging Vs

Exercise 3-2 Concept: Debugging

Goal:
Use the debugging tools built into LabVIEW.

Description:

Complete the following steps to load a broken VI and correct the errors.
Use single-stepping and execution highlighting to step through the VI.

1. Open and examine the Debug Exercise (Main) VI.

U Select File»Open.

Q Open Debug Exercise (Main).vi inthe C:\Exercises\
LabVIEW Basics I\Debugging directory.

The following front panel appears.

13 Debug Exercise (Main).vi Front Panel g@
File Edit Wiew Project Operate Tools Window Help T
= | 13pt Application Font |« “ iaw “.”u:v IE =)
A
Random Mumber Tulkiply Resulk Final Resulk
0.00 10,00 0,00
-
< | B

Figure 3-6. Debug Exercise (Main).vi Front Panel

uﬁb O Notice the Run button on the toolbar appears broken indicating that
the VI is broken and cannot run.

© National Instruments Corporation 3-21 LabVIEW Introduction Course Manual

Lesson 3

Troubleshooting and Debugging VIs

2. Display and examine the block diagram of Debug Exercise (Main) V1.

3.

LabVIEW Introduction Course Manual

Q Select Window»Show Block Diagram to display the block diagram

shown in Figure 3-7.

13 Debug Exercise (Main).vi Block DHagram

BEX]

File Edit Wiew Project

[#]

Qperate Tools Window Help T

-
13pt Application Fonk oo

Randorm MNumber Multiply Result
» *

e

nuﬁ

e

3

Final Resulk
*

1
1
I
! Debug Exercise (Sub).vi
1

.

Figure 3-7. Debug Exercise (Main).vi Block Diagram

The Random Number (0-1) function produces a random number

between O and 1.

The Multiply function multiplies the random number by 10. 0.

The numeric constant is the number multiplied with the random

number.

The Debug Exercise (Sub) VI, located in the C: \Exercises\
LabVIEW Basics I\Debugging\Supporting Files

directory, adds 100 . 0 and calculates the square root of the value.

Find and fix each error.

Q

Click the broken Run button to display the Error list window,

which lists all the errors.

Select an error description in the Error list window. The Details
section describes the error and in some cases recommends how to

correct the error.

Click the Help button to display a topic in the LabVIEW Help that
describes the error in detail and includes step-by-step instructions

for correcting the error.

3-22

ni.com

4
5.
6.
7
8.
¥
ol
g
pdt
9

[T

© National Instruments Corporation

Q

Q

Lesson 3 Troubleshooting and Debugging Vs

Click the Show Error button or double-click the error description to
highlight the area on the block diagram that contains the error.

Use the Error list window to fix each error.

Select File»Save to save the VI.

Display the front panel by clicking it or by selecting Window»Show
Front Panel.

Click the Run button.

Select Window»Show Block Diagram to display the block diagram.

Animate the flow of data through the block diagram.

Q

Q

Click the Highlight Execution button on the toolbar to enable
execution highlighting.

Click the Step Into button to start single-stepping. Execution
highlighting shows the movement of data on the block diagram from
one node to another using bubbles that move along the wires. Nodes
blink to indicate they are ready to execute.

Click the Step Over button after each node to step through the entire
block diagram. Each time you click the Step Over button, the
current node executes and pauses at the next node.

Data appear on the front panel as you step through the VI. The VI
generates a random number and multiplies it by 10. 0. The subVI
adds 100. 0 and takes the square root of the result.

When a blinking border surrounds the entire block diagram, click the
Step Out button to stop single-stepping through the Debug Exercise
(Main) VL

Single-step through the VI and its subVI.

Q

Q

Click the Step Into button to start single-stepping.

When the Debug Exercise (Sub) VI blinks, click the Step Into
button. Notice the Run button on the subVI.

Display the Debug Exercise (Main) VI block diagram by clicking it.
A green glyph appears on the subVI icon on the Debug Exercise
(Main) VI block diagram, indicating that the subVI is running.

Display the Debug Exercise (Sub) VI block diagram by clicking it.

3-23 LabVIEW Introduction Course Manual

Lesson 3 Troubleshooting and Debugging VIs

O Click the Step Out button twice to finish single-stepping through the
subVI block diagram. The Debug Exercise (Main) VI block diagram
is active.

O Click the Step Out button to stop single-stepping.

10. Use a probe to check intermediate values on a wire as a VI runs.

U Use the Probe tool to click any wire. The Probe window appears.

LabVIEW numbers the Probe window automatically and displays
the same number in a glyph on the wire you clicked.

Q Single-step through the VI again. The Probe window displays data
passed along the wire.

11. Place breakpoints on the block diagram to pause execution at that
location.

O Use the Breakpoint tool to click nodes or wires. Place a breakpoint
on the block diagram to pause execution after all nodes on the block
diagram execute.

A Click the Run button to run the VI. When you reach a breakpoint
during execution, the VI pauses and the Pause button on the toolbar
appears red.

O Click the Continue button to continue running to the next
breakpoint or until the VI finishes running.

U Use the Breakpoint tool to click the breakpoints you set and
remove them.

12. Click the Highlight Execution button to disable execution highlighting.

13. Select File»Close to close the VI and all open windows.

End of Exercise 3-2

LabVIEW Introduction Course Manual 3-24 ni.com

Lesson 3 Troubleshooting and Debugging Vs

Self Review: Quiz

1. How do you disable automatic error handling?
Select Operate»Disable Error Handling.
b. Enable execution highlighting.

c. Wire the error out cluster of a subVI to the error in cluster of another
subVI.

d. Place a checkmark in the Show Warnings checkbox of the Error
List dialog box.

2. Which of the following are the contents of the error cluster?
(multiple answers)

a. Status: Boolean
b. Error: String
Code: 32-bit integer

d. Source: String

© National Instruments Corporation 3-25 LabVIEW Introduction Course Manual

Lesson 3 Troubleshooting and Debugging Vs

Self Review: Quiz Answers

1. How do you disable automatic error handling?
Select Operate»Disable Error Handling.
b. Enable execution highlighting.

c. Wire the error out cluster of a subVI to the error in cluster of
another subVI.

d. Place a checkmark in the Show Warnings checkbox of the Error List
dialog box.

2. Which of the following are the contents of the error cluster? (multiple
answers)

a. Status: Boolean
b. Error: String
c. Code: 32-bit integer

d. Source: String

© National Instruments Corporation 3-27 LabVIEW Introduction Course Manual

Lesson 3 Troubleshooting and Debugging VIs

Notes

LabVIEW Introduction Course Manual 3-28 ni.com

Implementing a VI

This lesson teaches you how to implement code in LabVIEW. These skills
include designing a user interface, choosing a data type, documenting your
code, using looping structures such as While Loops and For Loops, adding
software timing to your code, displaying your data as a plot, and making
decisions in your code using a Case structure.

Topics

Designing Front Panel Windows
LabVIEW Data Types
Documenting Code

While Loops

For Loops

Timing a VI

Iterative Data Transfer

Plotting Data

Case Structures

~-CEZoTmEmUOW

Formula Nodes

© National Instruments Corporation 4-1 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

A. Designing Front Panel Windows

In the design phase of the software development method, you identify the
inputs and outputs of the problem. This identification leads directly to the
design of the front panel window.

You can retrieve the inputs of the problem using the following methods:

* acquiring from a device such as a data acquisition device or a
multimeter.

* reading directly from a file.

* manipulating controls.

You can display the outputs of the problem with indicators or log the outputs
to a file. You also can output data to a device using signal generation.
Lessons about data acquisition, signal generation and file logging appear
later in this course.

Designing Controls and Indicators

When choosing controls and indicators, make sure that they are appropriate
for the task you want to perform. For example, when you want to determine
the frequency of a sine wave, choose a dial control, or when you want to
display temperature, choose a thermometer indicator.

Labels and Captions

When creating labels for controls and indicators, make sure to label them
clearly. These labels help users identify the function for each control and
indicator. Also, clear labeling helps you document your code on the block
diagram. Control and indicator labels correspond to the names of terminals
on the block diagram.

Captions help you describe a front panel control. Captions do not appear on
the block diagram. Using captions allows you to document the user interface
without cluttering the block diagram with long names. For example, in the
Weather Station, you must provide an upper boundary for the temperature
level. If the temperature rises above this level, the Weather Station indicates
a heatstroke warning. You could call this control Upper Temperature
Limit (Celsius).However, this label would occupy unnecessary space
on the block diagram. Instead use a caption for the control Upper
Temperature Limit (Celsius) and use the label to create a shorter
description for the block diagram, such as Upper Temp.

LabVIEW Introduction Course Manual 4-2 ni.com

Lesson4 Implementing a VI

Control and Indicator Options

You can set default values for controls. Figure 4-2 shows a default value of
35 degrees Celsius. By setting a default value, you can assume a reasonable
value for a VI if the user does not set another value during run-time. To set
the default value complete the following steps:

1. Enter the desired value

2. Right-click the control and select Data Operations»Make Current
Value Default from the shortcut menu.

You also can hide and view items on controls and indicators. For example,
in Figure 4-1, you can see both the caption and the label. However, you only
need to see the caption. To hide the label, right-click the control and select
Visible Items»Label as shown in Figure 4-2.

Upper Temperature Limit (Celcius) Upper Temp

Upper Temp :-:;II—SS (@/4 b

&

‘1 Front Panel Window 2 Block Diagram

Figure 4-1. Setting Default Values

© National Instruments Corporation 4-3 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

® ®

Upper Temperature Limit (Celcius) \Upper Temperature Limit (Celdius)

R 5 Visible Ttems 5 5
Find Terrminal J Caption
Change to Indicator Unit Label
Radix
Description and Tip... o Increment/Decrement
Create 4
Replace »
Crata Operations | 3
Advanced 4
Representation »
Daka Range...
Format & Precision. ..
Properties
‘ 1 Before Hiding the Label 2 After Hiding the Label

Using Color

Figure 4-2. Hiding a Front Panel Label

Proper use of color can improve the appearance and functionality of your
user interface. Using too many colors, however, can result in color clashes
that cause the user interface to look too busy and distracting.

LabVIEW provides a color picker that can aid in selecting appropriate
colors. Select the Coloring tool and right-click an object or workspace to
display the color picker. The top of the color picker contains a grayscale
spectrum and a box you can use to create transparent objects. The second
spectrum contains muted colors that are well suited to backgrounds and
front panel objects. The third spectrum contains colors that are well suited
for highlights. Moving your cursor vertically from the background colors
to the highlight colors helps you select appropriate highlight colors for a
specific background color.

The following tips are helpful for color matching:

* Use the default LabVIEW colors. If a color is not available on a
computer, LabVIEW replaces it with the closest match. You also can use
system colors to adapt the appearance of a front panel window to the
system colors of any computer that runs the VI.

» Start with a gray scheme. Select one or two shades of gray and choose
highlight colors that contrast well against the background.

LabVIEW Introduction Course Manual 4-4 ni.com

Lesson4 Implementing a VI

* Add highlight colors sparingly—on plots, abort buttons, and perhaps
the slider thumbs—for important settings. Small objects need brighter
colors and more contrast than larger objects.

¢ Use differences in contrast more often that differences in color.
Color-blind users find it difficult to discern objects when differences
are in color rather than contrast.

* Use spacing and alignment to group objects instead of grouping by
matching colors.

* Good places to learn about color are stand-alone hardware instrument
panels, maps, and magazines.

* Choose objects from the System category of the Controls palette if you
want your front panel controls to use the system colors.

Spacing and Alignment

White space and alignment are probably the most important techniques for
grouping and separation. The more items that your eye can find on a line,
the cleaner and more cohesive the organization seems. When items are on
a line, the eye follows the line from left to right or top to bottom. This is
related to the script direction. Although some cultures view items right to
left, almost all follow top to bottom.

When you design the front panel, consider how users interact with the VI
and group controls and indicators logically. If several controls are related,
add a decorative border around them or put them in a cluster.

Centered items are less orderly than either left or right alignment. A band of
white space acts as a very strong means of alignment. Centered items
typically have ragged edges and the order is not as easily noticed.

Do not place front panel objects too closely together. Try to leave some
blank space to make the front panel easier to read. Blank space also prevents
users from accidentally clicking the wrong control or button.

Left-justify menus and right-justify related shortcuts as shown in Figure 4-3
on the left side: the LabVIEW File menu. Locating items in the
center-justified menu as shown in the same example on the right is more
difficult. Notice how the dividing lines between menu sections in the left
example help you find the items quickly and strengthen the relationship
between the items in the sections.

© National Instruments Corporation 4-5 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Text and Fonts

9O ®

Mew Vi Ctrl+M Mew 'Y Chld
Hew. .. Mew. ..
Open... Chil+0 Open... Chrl+0
Cloge Chrl+a Close Cirlewf
r Cloze Al
oot Save Chl+S

Save Ag.
Save Clrl+5 ;;SE ';"
Save As.. Save with Options..
Sawve All Fewvert. ..
Save with Optians. .. Page Setup...
Bevert.. Piint...
— Frint Window... Chil+P
Page Y| Properties... Chil+l

age 2etup... Fecently Opened Files »

Print... Exit Cl+0
Print “indow. .. Ctrl+F
Y| FProperties... Chrl+l

Fecently Opened Filez »

E it Chl+0

1 Good Menu 2 Bad Menu

Figure 4-3. Good and Bad Menu Examples

Avoid placing objects on top of other objects. Placing a label or any other
object over or partially covering a control or indicator slows down screen
updates and can make the control or indicator flicker.

Text is easier to read and information is more easily understood when
displayed in an orderly way. Use the default LabVIEW fonts. LabVIEW
replaces the built-in fonts with comparable font families on different
platforms. If you select a different font, LabVIEW substitutes the closest
match if the font is unavailable on a computer.

Using too many font styles can make your front panel window look busy and
disorganized. Instead, use two or three different sizes of the same font.
Serifs help people to recognize whole words from a distance. If you are
using more than one size of a font, make sure the sizes are noticeably
different. If not, it may look like a mistake. Similarly, if you use two
different fonts, make sure they are distinct.

Design your user interface with larger fonts and more contrast for industrial
operator stations. Glare from lighting or the need to read information from

LabVIEW Introduction Course Manual 4-6 ni.com

Lesson4 Implementing a VI

a distance can make normal fonts difficult to read. Also, remember that
touch screens generally require larger fonts and more spacing between
selection items.

@ Note If fonts do not exist on a target machine, substituted fonts can cause the user
interface to appear skewed.

User Interface Tips and Tools

Some of the built-in LabVIEW tools for making user-friendly front panel
windows include system controls, tab controls, decorations, menus, and
automatic resizing of front panel objects.

System Controls

A common user interface technique is to display dialog boxes at appropriate
times to interact with the user. You can make a VI behave like a dialog box
by selecting File»VI Properties, selecting the Window Appearance
category, and selecting the Dialog option.

Use the system controls and indicators located on the System palette in
dialog boxes you create.Because the system controls change appearance
depending on which platform you run the VI, the appearance of controls in
VIs you create is compatible on all LabVIEW platforms. When you run the
VI on a different platform, the system controls adapt their color and
appearance to match the standard dialog box controls for that platform.

System controls typically ignore all colors except transparent. If you are
integrating a graph or non-system control into the front panel windows,
match them by hiding some borders or selecting colors similar to the system
colors.

Tah Controls

Physical instruments usually have good user interfaces. Borrow heavily
from their design principles, but use smaller or more efficient controls, such
as ring controls or tab controls, where appropriate. Use tab controls to
overlap front panel controls and indicators in a smaller area.

To add another page to a tab control, right-click a tab and select Add Page
Before or Add Page After from the shortcut menu. Relabel the tabs with
the Labeling tool, and place front panel objects on the appropriate pages.
The terminals for these objects are available on the block diagram, as are
terminals for any other front panel object (except Decorations).

You can wire the enumerated control terminal of the tab control to the
selector of a Case structure to produce cleaner block diagrams. With this
method you associate each page of the tab control with a subdiagram, or

© National Instruments Corporation 4-7 LabVIEW Introduction Course Manual

Lesson 4

Implementing a VI

case, in the Case structure. You place the control and indicator terminals
from each page of the tab control—as well as the block diagram nodes
and wires associated with those terminals—into the subdiagrams of the
Case structure.

Decorations

Use the decorations located on the Decorations palette to group or separate
objects on a front panel with boxes, lines, or arrows. These objects are for
decoration only and do not display data.

Menus

Use custom menus to present front panel functionality in an orderly way and
in arelatively small space. Using small amounts of space leaves room on the
front panel for critical controls and indicators, items for beginners, items
needed for productivity, and items that do not fit well into menus. You also
can create keyboard shortcuts for menu items.

To create a run-time shortcut menu for front panel objects, right-click the
front panel object and select Advanced»Run-Time Shortcut Menu»Edit.
To create a custom run-time menu for your VI, select Edit»Run-Time
Menu.

Automatic Resizing of Front Panel Objects

Use the VI Properties»Window Size options to set the minimum size of
a window, maintain the window proportion during screen changes, and set
front panel objects to resize in two different modes. When you design a VI,
consider whether the front panel window can display on computers with
different screen resolutions. Select File» VI Properties, select Window
Size in the Category pull-down menu, and place a checkmark in the
Maintain Proportions of Window for Different Monitor Resolutions
checkbox to maintain front panel window proportions relative to the screen
resolution.

LabVIEW Introduction Course Manual 4-8 ni.com

Lesson4 Implementing a VI

B. LabVIEW Data Types

Terminals

Many different data types exist for data. You already learned about numeric,
Boolean, and string data types in Lesson 2, Navigating LabVIEW. Other
data types include the enumerated data type, dynamic data, and others. Even
within numeric data types, there are different data types, such as whole
numbers or fractional numbers.

The block diagram terminals visually communicate to the user some
information about the data type they represent. For example, in Figure 4-4,
Height (cm) is a double-precision, floating-point numeric. This is indicated
by the color of the terminal, orange, and by the text shown on the terminal,
DBL.

[Determines the area of a triangle. |

Base (cm)

F I> I> F:rea [cm™2)

Triangular Multiplier
Height {crm) 0.5
b

Figure 4-4. Terminal Data Type Example

Numeric Data Types

The numeric data type represents numbers of various types. To change the
representation type of a number, right-click the control, indicator, or
constant, and select Representation, as shown in Figure 4-5.

When you wire two or more numeric inputs of different representations to a
function, the function usually returns the output in the larger or wider
format. The functions coerce the smaller representations to the widest
representation before execution and LabVIEW places a coercion dot on the
terminal where the conversion takes place.

© National Instruments Corporation 4-9 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Mumeric
¥
YWisible Ikems 2
Find Contral

Hide Control

hange to Indicator
hange to Constant
Description and Tip. ..

Murmetic Paletke
Create
Daka Operations

3
[3
[
Advanced 2

Representation Diouble Precision

View s Icon

Properties EXT || DBL ||| 5GL

164 |[122 || 116 || I8
[t | [o I

M=
]

ued |[uzz |[uie |[us

| [R| | [
G556
=

Figure 4-5. Numeric Representation

The numeric data type includes the following subcategories of
representation—floating-point numbers, signed integers, unsigned integers,
and complex numbers.

Floating-Point Numbers

Floating-point numbers represent fractional numbers. In LabVIEW,
floating-point numbers are represented with the color orange.

Single-precision (SGL)—Single-precision, floating-point numbers have
32-bit IEEE single-precision format. Use single-precision, floating-point
numbers to save memory and avoid overflowing the range of the numbers.

Double-precision (DBL)—Double-precision, floating-point numbers have
64-bit IEEE double-precision format. Double-precision is the default format
for numeric objects. For most situations, use double-precision,
floating-point numbers.

Extended-precision (EXT)—In memory, the size and precision of
extended-precision numbers vary depending on the platform. In Windows,
they have 80-bit IEEE extended-precision format.

LabVIEW Introduction Course Manual 4-10 ni.com

Lesson4 Implementing a VI

Integers

Integers represent whole numbers. Signed integers can be positive or
negative. Use the unsigned integer data types when you know the integer is
always positive. In LabVIEW, integers are represented with the color blue.

When LabVIEW converts floating-point numbers to integers, the VI rounds
to the nearest even integer. For example, LabVIEW rounds 2.5 to 2 and
rounds 3.5 to 4.

Byte (I8)—Byte integer numbers have 8 bits of storage.
Word (I16)—Word integer numbers have 16 bits of storage.

Long (I32)—Long integer numbers have 32 bits of storage. In most cases,
it is best to use a 32-bit integer.

Quad (I64)—Quad integer numbers have 64 bits of storage.

Complex Numbers

Complex numbers are represented by two values linked together in memory:
one representing the real part and one representing the imaginary part. In
LabVIEW, because complex numbers are a type of floating-point number,
complex numbers are also represented with the color orange.

Complex Single—Complex single-precision, floating-point numbers
consist of real and imaginary values in 32-bit IEEE single-precision format.

Complex Double—Complex double-precision, floating-point numbers
consist of real and imaginary values in 64-bit IEEE double-precision format.

Complex Extended—Complex extended-precision, floating-point
numbers consist of real and imaginary values in IEEE extended-precision
format. In memory, the size and precision of extended-precision numbers
vary depending on the platform. In Windows, they have 80-bit IEEE
extended-precision format.

Boolean Values

LabVIEW stores Boolean data as 8-bit values. If the 8-bit value is zero, the
Boolean value is FALSE. Any nonzero value represents TRUE. In
LabVIEW, the color green represents Boolean data.

Boolean values also have a mechanical action associated with them. The two
major actions are latch and switch. Latch action is similar to a doorbell,

whereas switch action is similar to a light switch. You can also define when
the switch or latch occurs—when pressed, when released or until released.

© National Instruments Corporation 4-11 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

To learn more about mechanical action, experiment with the Mechanical

Action of Booleans VI in the NI Example Finder.

Ok Yisible Ikems
Find Terminal
hange to Indicator

Description and Tip...

Create

Replace

Daka Cperations
Advanced

Fit Control to Pane
Scale Object with Pane

Mechanical Ackion
Relzase Text

Properties

i . .

»

Lakch When Released

£
[
—

mE £
u
—_—

e
v I
ko —1 1

m
u
ED.

Figure 4-6. Boolean Mechanical Action

Strings

A string is a sequence of displayable or non-displayable ASCII characters.
Strings provide a platform-independent format for information and data.
Some of the more common applications of strings include the following:

* Creating simple text messages.

* Passing numeric data as character strings to instruments and then

converting the strings to numeric values.

* Storing numeric data to disk. To store numeric data in an ASCII file, you
must first convert numeric data to strings before writing the data to a

disk file.

* Instructing or prompting the user with dialog boxes.

On the front panel window, strings appear as tables, text entry boxes, and

labels. LabVIEW includes built-in VIs and functions you can use to

manipulate strings, including formatting strings, parsing strings, and other

editing.

In LabVIEW, strings are represented with the color pink.

LabVIEW Introduction Course Manual 4-12

ni.com

Lesson4 Implementing a VI

Right-click a front panel string control or indicator to select from the display
types shown in the following table. The table also shows an example
message in each display type.

Display Type

Description

Message

Normal Display

Displays printable characters
using the font of the control.
Non-displayable characters
generally appear as boxes.

There are four display
types.\ is a backslash.

‘\’ Codes Display

Displays backslash codes for all
non-displayable characters.

There\sare\sfour\sdisplay
\stypes.\n\\\sis\sa\sback
slash.

Password Display Displays an asterisk (*) for each | %k ks skskokdeode ok okok sk ko ok ok ok ok
character including spaces. Ehkkmhkkkhkkhhhkkh Sk
Hex Display Displays the ASCII value of each | 5468 6572 6520 6172 6520
character in hex instead of the 666F 7572 2064 6973 706C
character itself. 6179 2074 7970 6573 2EO0A
5C20 6973 2061 2062 6163
6B73 6C61 7368 2E
LabVIEW stores strings as a pointer to a structure that contains a 4-byte
length value followed by a 1D array of byte integers (8-bit characters).
Enums

An enum (enumerated control, constant or indicator) is a combination of
data types. An enum represents a pair of values, a string and a numeric,
where the enum can be one of a list of values. For example, if you created
an enum type called Month, the possible value pairs for a Month variable are
January-0, February-1, and so on through December-11. Figure 4-7 shows
an example of these data pairs in the Properties dialog box for an
enumerated control.

© National Instruments Corporation

4-13

LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

£ Enum Properties: Month

Appearance | Format and Precision | Edit Ibems Documentation | Daka Binding 4
Labels ‘alues ~ Insert
January i r
February 1 Delste
March z
Apri 3 | Move Lp |
May % B R
June s Maove Down
July]
August 7 w
l QK] l Cancel] [Help]

Figure 4-7. Properties for the Month Enumerated Control

Enums are useful because it is easier to manipulate numbers on the block
diagram than strings. Figure 4-8 shows the Month enumerated control, the
selection of a data pair in the enumerated control, and the corresponding
block diagram terminal.

LabVIEW Introduction Course Manual 4-14 ni.com

Lesson4 Implementing a VI

@ ® ®

Manth Maonth Maonth

1

EJIJanuary ,’_J January

February
March
April

May

June

July
Augusk
September
COckaber
Movember
December

‘ 1 Front Panel Control

2 Selecting an ltem 3 Block Diagram Terminal

Dynamic

© National Instruments Corporation 4-15

Figure 4-8. Month Enumerated Control

The dynamic data type stores the information generated or acquired by an
Express VI. The dynamic data type appears as a dark blue terminal, shown
at left. Most Express VIs accept and/or return the dynamic data type.

You can wire the dynamic data type to any indicator or input that accepts
numeric, waveform, or Boolean data. Wire the dynamic data type to an
indicator that can best present the data. Indicators include graphs, charts,
or numeric indicators.

Most other VIs and functions in LabVIEW do not accept the dynamic data
type. To use a built-in VI or function to analyze or process the data the
dynamic data type includes, you must convert the dynamic data type.

Use the Convert from Dynamic Data Express VI to convert the dynamic data
type to numeric, Boolean, waveform, and array data types for use with other
VIs and functions. When you place the Convert from Dynamic Data Express
VI on the block diagram, the Configure Convert from Dynamic Data
dialog box appears. The Configure Convert from Dynamic Data dialog
box displays options that let you specify how you want to format the data
that the Convert from Dynamic Data Express VI returns.

When you wire a dynamic data type to an array indicator, LabVIEW
automatically places the Convert from Dynamic Data Express VI on the
block diagram. Double-click the Convert from Dynamic Data Express VI to
open the Configure Convert from Dynamic Data dialog box to control
how the data appears in the array.

LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Use the Convert to Dynamic Data Express VI to convert numeric, Boolean,
waveform, and array data types to the dynamic data type for use with
Express VIs. When you place the Convert to Dynamic Data Express VI on
the block diagram, the Configure Convert to Dynamic Data dialog box
appears. Use this dialog box to select the kind of data to convert to the
dynamic data type.

LabVIEW Introduction Course Manual 4-16 ni.com

Lesson4 Implementing a VI

C. Documenting Code

Professional developers who maintain and modify VIs know the value of
good documentation. Document the block diagram well to ease future
modification of the code. In addition, document the front panel window well
to explain the purpose of the VI and the front panel objects.

Use tip strips, descriptions, VI Properties, and good design to document
front panel windows.

Tip Strips and Descriptions

VI Properties

Tip strips are explanations that appear when you mouse over a control or
indicator. For example, you might add a tip strip saying that a temperature
is in degrees Celsius or explain how the input works in an algorithm.
Descriptions provide additional information about specific controls and
indicators. To add tip strips and descriptions to controls, right-click the
control or indicator and select Description and Tip from the shortcut menu.

Use the Documentation component of the VI Properties dialog box to
create VI descriptions and to link from VIs to HTML files or to compiled
help files. To display VI Properties right-click the VI icon on the front panel
or block diagram and select VI Properties from the shortcut menu or select
File»VI Properties. Then select Documentation from the Categories
drop-down menu. You cannot access this dialog box while a VI runs.

This page includes the following components:

* VI description—Contains the text that appears in the Context Help
window if you move the cursor over the VI icon. Use and tags
around any text in the description you want to format as bold. You also
can use the VI Description property to edit the VI description
programmatically.

* Help tag—Contains the HTML filename or index keyword of the topic
you want to link to in a compiled help file. You also can use the
Help:Document Tag property to set the help tag programmatically.

* Help path—Contains the path to the HTML file or to the compiled help
file you want to link to from the Context Help window. If this field is
empty, the Detailed help link does not appear in the Context Help
window, and the Detailed help button is dimmed.

* Browse—Displays a file dialog box to use to navigate to an HTML file
or to a compiled help file to use as the Help path.

© National Instruments Corporation 4-17 LabVIEW Introduction Course Manual

Lesson 4

Implementing a VI

Naming Controls and Indicators

Giving controls and indicators logical and descriptive names adds usability
to front panels. For example, if you name a control Temperature, a user
may not know which units to use. However, naming a control
Temperature °C adds more information to the front panel. You now know
to enter temperatures in metric units.

Graphical Programming

While the graphical nature of LabVIEW aids in self-documentation of block
diagrams, extra comments are helpful when modifying your VIs in the
future. There are two types of block diagram comments—comments that
describe the function or operation of algorithms and comments that explain
the purpose of data that passes through wires. Both types of comments are
shown in the following block diagram. You can insert standard labels either
with the Labeling tool, or by inserting a free label from the Functions»
Programming»Structures»Decorations subpalette. By default, free labels
have a yellow background color.

S

TS "R OUEpUE”

------ = Process Variables =

FID
Qlukput

EE =

Zalculate the control oukpat
For the R wessel kermperature

Figure 4-9. Documenting a Block Diagram

Use the following guidelines for commenting your Vls:
e Use comments on the block diagram to explain what the code is doing.

* While LabVIEW code can be self-documenting because it is graphical,
use free labels to describe how the block diagram functions.

* Do not show labels on function and subVI calls because they tend to be
large and unwieldy. A developer looking at the block diagram can find
the name of a function or subVI by using the Context Help window.

* Use small free labels with white backgrounds to label long wires to
identify their use. Labeling wires is useful for wires coming from shift
registers and for long wires that span the entire block diagram. Refer to
the Case Structures section of this lesson for more information about
shift registers.

* Label structures to specify the main functionality of the structure.

LabVIEW Introduction Course Manual 4-18 ni.com

Lesson4 Implementing a VI

* Label constants to specify the nature of the constant.

* Use free labels to document algorithms that you use on the block
diagrams. If you use an algorithm from a book or other reference,
provide the reference information.

© National Instruments Corporation 4-19 LabVIEW Introduction Course Manual

Lesson 4

Exercise 4-1
Goal

Scenario

Design

Implementing a VI

Determine Warnings VI

Create and document a simple VI.

You must create a portion of a larger project. The lead developer gives you
the inputs of the VI, the algorithm, and the expected outputs. Build and

document a VI based on the design given.

Inputs and Qutputs

Type

Name

Properties

Numeric control

Current Temp

Double-precision, floating
point

Numeric control Max Temp Double-precision, floating
point
Numeric control Min Temp Double-precision, floating

point

String indicator

Warning Text

Three potential values:
Heatstroke Warning, No
Warning, and Freeze Warning

Round LED
indicator

Warning?

LabVIEW Introduction Course Manual

4-20

ni.com

Lesson4 Implementing a VI

Flowchart

Yes

v

Warning Text =
Heatstroke
Warning

Warning Text =
No Warning

Current Temp

<= Min Temp? No

Yes
Warning Text = Pass current value
Freeze Warning of Warning Text

Warning
Text = No
Warning?

Yes

Warning ? = False Warning ? = True

Figure 4-10. Determine Warnings VI Flowchart

© National Instruments Corporation 4-21 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Implementation

Follow the instructions given below to create a front panel similar to
Figure 4-11. This front panel retrieves from the user the current
temperature, the maximum temperature, and the minimum temperature, and
displays to the user the warning string and the warning Boolean LED. This
V1 is part of the temperature weather station project studied throughout the

course.
\Current Termp
o
Max Temp Warning Texk
oo
‘Min Termp Warnings
oo o
Figure 4-11. Determine Warnings VI Front Panel
1. Save the new VI

B iFE

(D)

U Select File»Save.

U Save the VI as Determine Warnings.viinthe C:\Exercises\
LabVIEW_Basics_I\Determine Warnings directory.

Create a numeric control for the current temperature.
U Add a Numeric control to the front panel window.
O Change the label of the numeric control to Current Temp.

O Right-click the control, select Representation, and confirm that the
representation type is set to double precision.

Tip This subVI could be used for Fahrenheit, Kelvin, or any temperature scale, as long

as all inputs use the same scale. Therefore, it is not necessary to add scale units to the

labels.

3. Create a numeric control for the maximum temperature.

LabVIEW Introduction Course Manual

U Hold down the <Ctrl> key and click and drag the Current Temp
numeric control to create a copy of the control.

4-22 ni.com

b

Lesson4 Implementing a VI

O Change the label text of the new numeric control to Max Temp.
Create a numeric control for the minimum temperature.

O Hold down the <Ctrl> key and click and drag the Max Temp numeric
control to create a copy of the control.

O Change the label text of the new numeric control to Min Temp.
Create a string indicator for the warning text.
Q Place a string indicator on the front panel.
O Change the label text of the string indicator to Warning Text.

Create a Round LED or other Boolean indicator for the warning
Boolean.

O Place a Round LED on the front panel.
 Change the label text of the Boolean indicator to Warning?.

Switch to the block diagram.

@ Tip If you do not want to use the Icon Terminal view on the block diagram, select
Tools»Options, then select Block Diagram from the Category list. Remove the
checkmark from the Place front panel terminals as icons item.

Follow the instructions given below to create a block diagram similar to
Figure 4-12.

Current Temp

Freeze Warning

Warning Text
L [;.\ Fibc
Min Temp
*
IHeatstroke warning |

=

Warning?
Max Temp Mo W arnin "1;;"
*
Figure 4-12. Determine Warnings VI Block Diagram
© National Instruments Corporation 4-23 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

8.
[

9.
&>

10.

LabVIEW Introduction Course Manual

Compare Current Temp and Max Temp.

Q

Q

Q

Add a Greater Or Equal? function to the block diagram.

Wire the Current Temp terminal to the x input terminal of the
Greater Or Equal? function.

Wire the Max Temp terminal to the y input terminal of the Greater
Or Equal? function.

Compare Current Temp and Min Temp.

Q

Q

Q

Add a Less Or Equal? function to the block diagram.

Wire the Current Temp terminal to the x input terminal of the Less
Or Equal? function.

Wire the Min Temp terminal to the y input terminal of the Less Or
Equal? function.

If the Current Temp is equal to or greater than the Max Temp,
generate a Heatstroke Warning string, otherwise generate a No
Warning string.

Q

Add the Select function to the block diagram to the right of the
Greater Or Equal? function.

Wire the output of the Greater Or Equal? function to the s input
terminal of the Select function.

Add a string constant to the block diagram to the upper left of the
Select function.

Enter Heatstroke Warning in the string constant.

Wire the Heatstroke Warning string to the t input of the Select
function.

Hold down the <Ctrl> key and click and drag the Heatstroke
Warning string constant to the lower left of the Select function to
create a copy of the constant.

Enter No Warning in the second string constant.

Wire the No Warning string to the f input of the Select function.

4-24 ni.com

Lesson4 Implementing a VI

11. If the Current Temp is equal to or less than the Min Temp, generate a
Freeze Warning string, otherwise use the string generated in step 10.

12.

13.

14.

© National Instruments Corporation

Q

Create a copy of the Select function and place it to the right of the
Less Or Equal?.

Wire the output terminal of the Less Or Equal? function to the s input
terminal of the Select function.

Create a copy of the string constant and place it to the upper left of
the Select function.

Enter Freeze Warning in the string constant.

Wire the Freeze Warning string to the t input terminal of the
Select function.

Wire the output of the previous Select function to the f input terminal
of the new Select function.

Display the generated text.

Q

Wire the output of the second Select function to the Warning Text
indicator.

Generate the Warning? Boolean control by determining if the value of
Warning Text is equal to No Warning.

Q

Q

Q

Add a Not Equal? function to the left of the Warning? Boolean
function.

Wire the output of the second Select function to the x input terminal
of the Not Equal? function.

Wire the No Warning string constant to the y input terminal of the
Not Equal? function.

Wire the output of the Not Equal? function to the Warning? function.

Document the code using the following suggestions on the front panel.

Q

Create tip strips for each control and indicator stating the purpose of
the object and the units used. To access tip strips, right-click a
control, and select Description and Tip.

Document the VI Properties, giving a general description of the VI,
a list of inputs and outputs, your name, and the date the VI was
created. To access the VI Properties dialog box, select File» VI
Properties.

4-25 LabVIEW Introduction Course Manual

Lesson 4

Test

Implementing a VI

Q Document the block diagram algorithm with a free label.

15. Save the VI.

1.

Min Temp, and running the VI for each set.

Test the VI by entering a value for Current Temp, Max Temp, and

Table 4-1 shows the expected Warning Text string and
Warning? Boolean value for each set of input values.

Table 4-1. Testing Values for Determine Warnings.vi

Current Temp Max Temp Min Temp Warning Text Warning?

30 30 10 Heatstroke True
Warning

25 30 10 No Warning False

10 30 10 Freeze True
Warning

What happens if you input a Max Temp value that is less than the Min
Temp? What would you expect to happen? You learn to handle issues

like this one in Exercise 4-6.

2. Save and close the VI.

End of Exercise 4-1

LabVIEW Introduction Course Manual

4-26

ni.com

Lesson4 Implementing a VI

D. While Loops

Similar to a Do Loop or a Repeat-Until Loop in text-based programming
languages, a While Loop, shown as follows, executes a subdiagram until a
condition occurs.

The following illustration shows a While Loop in LabVIEW, a flowchart
equivalent of the While Loop functionality, and a pseudo code example of
the functionality of the While Loop.

Condition
met?
Yes

No Repeat (code);
Until Condition met;

End;

® ®

1

LabVIEW While Loop 2 Flowchart 3 Pseudo Code

Figure 4-13. While Loop

The While Loop is located on the Structures palette. Select the While Loop
from the palette then use the cursor to drag a selection rectangle around the
section of the block diagram you want to repeat. When you release the
mouse button, a While Loop boundary encloses the section you selected.

Add block diagram objects to the While Loop by dragging and dropping
them inside the While Loop.

Tip The While Loop always executes at least once.

The While Loop executes the subdiagram until the conditional terminal, an
input terminal, receives a specific Boolean value. The default behavior and
appearance of the conditional terminal is Stop if True, shown as follows.

When a conditional terminal is Stop if True, the While Loop executes its
subdiagram until the conditional terminal receives a TRUE value. You can
change the behavior and appearance of the conditional terminal by

© National Instruments Corporation 4-27 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Structure Tunnels

right-clicking the terminal or the border of the While Loop and selecting
Continue if True, shown as follows, from the shortcut menu.

When a conditional terminal is Continue if True, the While Loop executes
its subdiagram until the conditional terminal receives a FALSE value. You
also can use the Operating tool to click the conditional terminal to change
the condition.

The iteration terminal (an output terminal), shown as follows, contains the
number of completed iterations.

[

The iteration count always starts at zero. During the first iteration, the
iteration terminal returns 0.

In the following block diagram, the While Loop executes until the subVI
output is greater than or equal to 10. 00 and the Enable control is True.
The And function returns True only if both inputs are True. Otherwise,
it returns False.

In the following example, there is an increased probability of an infinite
loop. Generally, the desired behavior is to have one condition met to stop the
loop, rather than requiring both conditions to be met.

0.7

Enable
=

Iterations

Figure 4-14. Possible Infinite Loop

Tunnels feed data into and out of structures. The tunnel appears as a solid
block on the border of the While Loop. The block is the color of the data
type wired to the tunnel. Data pass out of a loop after the loop terminates.
When a tunnel passes data into a loop, the loop executes only after data
arrive at the tunnel.

LabVIEW Introduction Course Manual 4-28 ni.com

Lesson4 Implementing a VI

In the following block diagram, the iteration terminal is connected to a
tunnel. The value in the tunnel does not get passed to the Iterations
indicator until the While Loop finishes executing.

Enable

=

Tkerations

Figure 4-15. While Loop Tunnel

Only the last value of the iteration terminal displays in the Iterations
indicator.

Using While Loops for Error Handling

You can wire an error cluster to the conditional terminal of a While Loop to
stop the iteration of the While Loop. When you wire the error cluster to the
conditional terminal, only the TRUE or FALSE value of the status
parameter of the error cluster is passed to the terminal. When an error
occurs, the While Loop stops.

When an error cluster is wired to the conditional terminal, the shortcut menu
items Stop if True and Continue if True change to Stop on Error and
Continue while Error.

In Figure 4-16, the error cluster and a stop button are used together to
determine when to stop the loop. This is the recommended method for
stopping most loops.

v v v

=0

Sinulate Signal
Sire 4

BFFOF DUt Veeeceeeofap [SEaEUS |y

i

skop

[e]

Figure 4-16. Stopping a While Loop

© National Instruments Corporation 4-29 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Exercise 4-2 Auto Match VI

Goal
Use a While Loop and an iteration terminal and pass data through a tunnel.
Scenario
Build a VI that continuously generates random numbers between 0 and 1000
until it generates a number that matches a number selected by the user.
Determine how many random numbers the VI generated before the
matching number.
Design

Table 4-2. Inputs and Outputs

Type Name Properties

Input Number to Match Double-precision,
floating-point between 0 and
1000, coerce to nearest whole
number, default value = 50

Output Current Number Double-precision
floating-point

Output Number of Integer
Iterations

LabVIEW Introduction Course Manual 4-30 ni.com

Flowchart

Lesson4 Implementing a VI

Generate a

No—

random number |«
between 0 and 1

Multiply by 1000

Rount to nearest

integer value

Display value to
user

= Number to

Add 1 to iteration
terminal

Display Number of
Iterations

© National Instruments Corporation

Figure 4-17. Auto Match Flowchart

4-31

LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Implementation

Open a blank VI and build the following front panel. Modify the controls
and indicators as shown in the following front panel and as described in the
following steps.

1.

LabVIEW Introduction Course Manual

Number to Match Current Number
A
- o

of iterations

—

Create the Number to Match input.

Q

Q

Add a numeric control to the front panel window.

Label the control Number to Match.

Set the properties for the Number to Match control so that the default
value is 50, the data range is from O to 1000, the increment value is 1,
and the digits of precision is 0.

Q

Right-click the Number to Match control and select Data Range
from the shortcut menu. The Data Range page of the Numeric
Properties dialog box appears.

Remove the checkmark from the Use Default Range checkbox.
Set the Default Value to 50.

Set the Minimum value to 0 and select Coerce from the Out of
Range Action pull-down menu.

Set the Maximum value to 1000 and select Coerce from the Out of
Range Action pull-down menu.

Set the Increment value to 1 and select Coerce to Nearest from the
Out of Range Action pull-down menu.

Select the Format and Precision tab.

Select Floating Point and change Precision Type from Significant
digits to Digits of precision.

Enter 0 in the Digits text box and click the OK button.

4-32 ni.com

Lesson4 Implementing a VI

Create the Current Number output.

Q Add a numeric indicator to the front panel window.

U Label the indicator Current Number.

Set the digits of precision for the Current Number output to 0.

Q

Q

Right-click the Current Number indicator and select Format &
Precision from the shortcut menu. The Format & Precision page
of the Numeric Properties dialog box appears.

Select Floating Point and change Precision Type to Digits of
precision.

Enter 0 in the Digits text box and click the OK button.

Create the # of iterations output.

O Place a numeric indicator on the front panel.

U Label the indicator # of iterations.

Set the representation for the # of iterations output to a long integer.

O Right-click the # of iterations indicator.

O Select Representation»I32 from the shortcut menu.

Create the following block diagram.

Round To Mearest Current Number
»

1000.00 Mat Equal?

Mumber ko Makch

Increment # of iterations

inkeration starks &k 0
5o increment by 1

7. Generate a random number integer between 0 and 1000.

© National Instruments Corporation

U0 Add the Random Number (0-1) function to the block diagram. The

Random Number (0-1) generates a random number between 0 and 1.

4-33 LabVIEW Introduction Course Manual

Lesson 4

Implementing a VI

2>

&>
[ed]

(i

O Add the Multiply function to the block diagram. The Multiply
function multiplies the random number by y to produce a random
number between 0 and y.

O Right-click the y input of the Multiply function, select Create»
Constant from the shortcut menu, enter 1000, and press the
<Enter> key to create a numeric constant.

Q Add the Round To Nearest function to the block diagram. This
function rounds the random number to the nearest integer.

Compare the randomly generated number to the value in the Number to
Match control.

O Add the Not Equal? function to the block diagram. This function
compares the random number with Number to Match and returns
True if the numbers are not equal; otherwise, it returns False.

Repeat the algorithm until the Not Equal? function returns True.
U Add a While Loop from the Structures palette to the block diagram.

O Right-click the conditional terminal and select Continue if True
from the shortcut menu.

Display the number of random numbers generated to the user by adding
one to the iteration terminal value.

O Wire the iteration terminal to the border of the While Loop. A blue
tunnel appears on the While Loop border.

Tip Each time the loop executes, the iteration terminal increments by one. Wire the
iteration value to the Increment function because the iteration count starts at 0. The
iteration count passes out of the loop upon completion.

5>

11.

LabVIEW Introduction Course Manual

O Add the Increment function to the block diagram. This function adds
1 to the While Loop count.

Save the VI as auto Match.vi in the C: \Exercises\LabVIEW
Basics I\Automatch directory.

4-34 ni.com

Testing

0.

Lesson4 Implementing a VI

. Display the front panel.

Change the number in Number to Match to a number that is in the data
range, which is 0 to 1000 with an increment of 1.

Run the VI.

Change Number to Match and run the VI again. Current Number
updates at every iteration of the loop because it is inside the loop.
of iterations updates upon completion because it is outside the loop.

To see how the VI updates the indicators, enable execution highlighting.

U On the block diagram toolbar, click the Highlight Execution button
to enable execution highlighting. Execution highlighting shows the
movement of data on the block diagram from one node to another so
you can see each number as the VI generates it.

Run the VI and observe the data flow.
Try to match a number that is outside of the data range.
Change Number to Match to a number that is out of the data range.

O Run the VI. LabVIEW coerces the out-of-range value to the nearest
value in the specified data range.

Close the VI.

End of Exercise 4-2

© National Instruments Corporation

4-35 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

E. For Loops

A For Loop, shown as follows, executes a subdiagram a set number of
times.The following illustration shows a For Loop in LabVIEW, a flowchart
equivalent of the For Loop functionality, and a pseudo code example of the
functionality of the For Loop.

N=100;
i=0;
Until 1=N:
.. Repeat (code; i=i+1);
@ G |7 End;
1 LabVIEW For Loop 2 Flowchart 3 Pseudo Code

Figure 4-18. For Loop

The For Loop is located on the Programming»Structures palette. You also
can place a While Loop on the block diagram, right-click the border of the
While Loop, and select Replace with For Loop from the shortcut menu to
change a While Loop to a For Loop. The value in the count terminal (an
input terminal), shown as follows, indicates how many times to repeat the
subdiagram.

The iteration terminal (an output terminal), shown as follows, contains the
number of completed iterations.

[

The iteration count always starts at zero. During the first iteration, the
iteration terminal returns 0.

The For Loop differs from the While Loop in that the For Loop executes a
set number of times. A While Loop stops executing the subdiagram only if
the value at the conditional terminal exists.

LabVIEW Introduction Course Manual 4-36 ni.com

Lesson4 Implementing a VI

The following For Loop generates a random number every second for
100 seconds and displays the random numbers in a numeric indicator.

100N

Randarn Mumber (0-1)
=

-1 Random Number
Indicakar
>

L] P

Figure 4-19. For Loop Example

Numeric Conversion

LabVIEW can represent numeric data types as signed or unsigned integers,
floating-point numeric values, or complex numeric values, as discussed in
the LabVIEW Data Types section of this lesson. Normally, when you wire
different representation types to the inputs of a function, the function returns
an output in the larger or wider format. LabVIEW chooses the
representation that uses more bits. If the number of bits is the same,
LabVIEW chooses unsigned over signed. For example, if you wire a

DBL and an 32 to a Multiply function, the result is a DBL, as shown in
Figure 4-20. The 64-bit signed integer is coerced because it uses fewer bits
than the double-precision, floating-point numeric value. The lower input of
the Multiply function shows a grey dot, called a coercion dot, that indicates
a numeric coercion occurred.

DEL Mumeric DEL Result

¥ g{%

k

132 Mumeric
(132K

1 Coercion Dot

Figure 4-20. Numeric Conversion Example

However, the For Loop count terminal works in the opposite manner. If you
wire a double-precision, floating-point numeric value to the 64-bit count
terminal, LabVIEW converts the larger numeric value to a 32-bit signed
integer. Although the conversion is contrary to normal conversion standards,
it is necessary, because a For Loop can only execute an integer number of
times.

© National Instruments Corporation 4-37 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Double-Precision
Flaating Poink 32-Bit Signed Inkeger

W [EEFL N

b4

[[

1 Coercion Dot

Figure 4-21. Coercion on a For Loop

LabVIEW Introduction Course Manual 4-38 ni.com

Lesson4 Implementing a VI

Exercise 4-3 Concept: While Loops versus For Loops

Goal
Understand when to use a While Loop and when to use a For Loop.
Description
For the following scenarios, decide whether to use a While Loop or a For
Loop.
Scenario 1

Acquire a pressure every second for one minute.

1. If you use a While Loop, what is the condition that you need to stop the
loop?

2. If you use a For Loop, how many iterations does the loop need to run?

3. Is it easier to implement a For Loop or a While Loop?

Scenario 2
Acquire a pressure until the pressure is 1400 psi.

1. If you use a While Loop, what is the condition that you need to stop the
loop?

2. If you use a For Loop, how many iterations does the loop need to run?

3. Is it easier to implement a For Loop or a While Loop?

© National Instruments Corporation 4-39 LabVIEW Introduction Course Manual

Lesson 4

Implementing a VI

Scenario 3

Acquire a pressure and a temperature until both values are stable for two
minutes.

1. If you use a While Loop, what is the condition that you need to stop the
loop?

2. If you use a For Loop, how many iterations does the loop need to run?

3. Is it easier to implement a For Loop or a While Loop?

Scenario 4

Output a voltage ramp starting at zero, increasing incrementally by 0.5 V
every second, until the output voltage is equal to 5 V.

1. If you use a While Loop, what is the condition that you need to stop the
loop?

2. If you use a For Loop, how many iterations does the loop need to run?

3. Is it easier to implement a For Loop or a While Loop?

LabVIEW Introduction Course Manual 4-40 ni.com

Lesson4 Implementing a VI

Answers
Scenario 1
Acquire a pressure every second for one minute.
1. While Loop: Time = 1 minute
2. For Loop: 60 iterations
3. Both are possible.

Scenario 2

Acquire a pressure until the pressure is 1400 psi.
1. While Loop: Pressure = 1400 psi

2. For Loop: unknown

3. A While Loop. Without more information, a For Loop is impossible.

Scenario 3

Acquire a pressure and a temperature until both values are stable for two
minutes.

1. While Loop: [(Last Temperature = Previous Temperature) for 2 minutes
or more] AND [(Last Pressure = Previous Pressure) for 2 minutes or
more]

2. For Loop: unknown

A While Loop. Without more information, a For Loop is impossible.

Scenario 4

Output a voltage ramp starting at zero, increasing incrementally by 0.5 V
every second, until the output voltage is equal to 5 V.

1. While Loop: Voltage =5V
2. For Loop: 11 iterations

3. Both are possible.

End of Exercise 4-3

© National Instruments Corporation 4-41 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

F. Timing a Vi

Wait Functions

[

When a loop finishes executing an iteration, it immediately begins executing
the next iteration, unless it reaches a stop condition. Most often, you need to
control the iteration frequency or timing. For example, if you are acquiring
data, and you want to acquire the data once every 10 seconds, you need a
way to time the loop iterations so they occur once every 10 seconds.

Even if you do not need the execution to occur at a certain frequency, you
need to provide the processor with time to complete other tasks, such as
processing the user interface. This section introduces some methods for
timing your loops.

Place a wait function inside a loop to allow a VI to sleep for a set amount of
time. This allows your processor to address other tasks during the wait time.
Wait functions use the millisecond clock of the operating system.

The Wait Until Next ms Multiple function monitors a millisecond counter
and waits until the millisecond counter reaches a multiple of the amount you
specify. Use this function to synchronize activities. Place this function in a
loop to control the loop execution rate. For this function to be effective, your
code execution time must be less than the time specified for this function.
The execution rate for the first iteration of the loop is indeterminate.

The Wait (ms) function waits until the millisecond counter counts to an
amount equal to the input you specify. This function guarantees that the loop
execution rate is at least the amount of the input you specify.

@ Note The Time Delay Express VI behaves similar to the Wait (ms) function with the
addition of built-in error clusters. Refer to Lesson 3, Troubleshooting and Debugging
Vs, for more information about error clusters.

Elapsed Time

5

In some cases, it is useful to determine how much time elapses after some

point in your VI. The Elapsed Time Express VI indicates the amount of time
that elapses after the specified start time. This VI allows you to keep track
of time while the VI continues to execute. This function does not provide the
processor with time to complete other tasks. You will learn more about this
Express VI, as you use it in the Weather Station course project.

LabVIEW Introduction Course Manual 4-42 ni.com

Lesson4 Implementing a VI

G. Iterative Data Transfer

When programming with loops, you often must access data from previous
iterations of the loop. For example, if you are acquiring one piece of data in
each iteration of a loop and must average every five pieces of data, you must
remember the data from previous iterations of the loop. Shift registers
transfer values from one loop iteration to the next.

@ Note Feedback Nodes are another method used in LabVIEW for retaining information
from a previous iteration. Refer to the Feedback Node topic oh the LabVIEW Help for
more information about feedback nodes.

Shift registers are similar to static variables in text-based programming
languages.

Use shift registers when you want to pass values from previous iterations
through the loop to the next iteration. A shift register appears as a pair of
terminals, shown as follows, directly opposite each other on the vertical
sides of the loop border.

= =

The terminal on the right side of the loop contains an up arrow and stores data on
the completion of an iteration. LabVIEW transfers the data connected to the right
side of the register to the next iteration. After the loop executes, the terminal on
the right side of the loop returns the last value stored in the shift register.

Create a shift register by right-clicking the left or right border of a loop and
selecting Add Shift Register from the shortcut menu.

A shift register transfers any data type and automatically changes to the data
type of the first object wired to the shift register. The data you wire to the
terminals of each shift register must be the same type.

You can add more than one shift register to a loop. If you have multiple
operations that use previous iteration values within your loop, use multiple
shift registers to store the data values from those different processes in the
structure, as shown in the following figure.

© National Instruments Corporation 4-43 LabVIEW Introduction Course Manual

Lesson 4

Implementing a VI

Initializing Shift Registers

Initializing a shift register resets the value the shift register passes to the first
iteration of the loop when the VI runs. Initialize a shift register by wiring a
control or constant to the shift register terminal on the left side of the loop,
as shown in the following figure.

Mumeric

In the previous figure, the For Loop executes five times, incrementing the
value the shift register carries by one each time. After five iterations of the
For Loop, the shift register passes the final value, 5, to the indicator and the
VI quits. Each time you run the VI, the shift register begins with a value of 0.

If you do not initialize the shift register, the loop uses the value written to
the shift register when the loop last executed or the default value for the data
type if the loop has never executed.

Use an uninitialized shift register to preserve state information between
subsequent executions of a VI. The following figure shows an uninitialized
shift register.

Increment m m
+

LabVIEW Introduction Course Manual 4-44 ni.com

Lesson4 Implementing a VI

In the previous figure, the For Loop executes five times, incrementing the
value the shift register carries by one each time. The first time you run the
VI, the shift register begins with a value of 0, which is the default value for
a 32-bit integer. After five iterations of the For Loop, the shift register passes
the final value, 5, to the indicator, and the VI quits. The next time you run
the VI, the shift register begins with a value of 5, which was the last value
from the previous execution. After five iterations of the For Loop, the shift
register passes the final value, 10, to the indicator. If you run the VI again,
the shift register begins with a value of 10, and so on. Uninitialized shift
registers retain the value of the previous iteration until you close the VI.

Stacked Shift Registers

Stacked shift registers let you access data from previous loop iterations.
Stacked shift registers remember values from multiple previous iterations
and carry those values to the next iterations. To create a stacked shift
register, right-click the left terminal and select Add Element from the
shortcut menu.

Stacked shift registers can occur only on the left side of the loop because the
right terminal transfers the data generated only from the current iteration to
the next iteration, as shown in the following figure.

Murneric

If you add another element to the left terminal in the previous figure, values
from the last two iterations carry over to the next iteration, with the most
recent iteration value stored in the top shift register. The bottom terminal
stores the data passed to it from the previous iteration.

© National Instruments Corporation 4-45 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Exercise 4-4 Average Temperature Vi

Goal

Use a For Loop and shift registers to average data.

Scenario

The Temperature Monitor VI acquires and displays temperature. Modify the
VI to average the last three temperature measurements and display the
running average on the waveform chart.

Design

Figure 4-22 and Figure 4-23 show the Temperature Monitor VI front panel
and block diagram.

Power

*om

OFF

Termpetature History Temp m
90,0

87.5-

85.0-
2.5

[T

2 a0.0-

&

77.5-

75.0-

72.5-

7i.0-)

| |]
0.0 5.0 10.0 15.0 20,0

Time {sec)

Figure 4-22. Temperature Monitor VI Front Panel

Temperature Hiskary
HTemp %

‘Wit Until Mext ms Mulkiple

millisecond multiple q
g —]

Powser

-

Figure 4-23. Temperature Monitor VI Block Diagram

To modify this VI, you need to retain the temperature values from the
previous two iterations, and average the values. Use a shift register with an
additional element to retain data from the previous two iterations. Initialize
the shift register with a reading from the temperature sensor. Chart only the
average temperature.

LabVIEW Introduction Course Manual

4-46 ni.com

Lesson4 Implementing a VI

Implementation

1. Test the VI. If you have hardware, follow the instructions in the
Hardware Installed column. Otherwise, follow the instructions in the
No Hardware Installed column.

Hardware Installed No Hardware Installed
Open the Temperature Monitor VI in the Open Temperature Monitor (Demo) VI in the
C:\Exercises\LabVIEW Basics I\ C:\Exercises\LabVIEW Basics I\
Average Temperature directory. No Hardware Required\Average

Temperature directory.

Select File»Save As and rename the VI Select File»Save As and rename the VI
Average Temperature.vi inthe Average Temperature.vi inthe
C:\Exercises\LabVIEW Basics I\ C:\Exercises\LabVIEW Basics I\
Average Temperature directory. No Hardware Required\Average

Temperature directory.

On the DAQ Signal Accessory, flip the Run the VI. Notice the variation in the
temperature sensor noise switch to the On simulated temperature reading.
position. This switch introduces noise to the
temperature reading.

Run the VI.

Place your finger on the temperature sensor of
the DAQ Signal Accessory to increase the
temperature reading. You can quickly move
your finger across the sensor to increase the
reading even more through friction. Notice the
number of spikes in the reading.

2. Stop the VI by changing the state of the Power switch on the front panel.
Notice that the Power switch immediately switches back to the On
state. The mechanical action of the switch controls this behavior.

In the following steps, modify the VI to reduce the number of temperature
spikes.

3. Display the block diagram.

© National Instruments Corporation 4-47 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

ﬂTernp

4. Modify the block diagram as shown in Figure 4-24.

lTemD I mpnund Arithmetic Temperature Hiskary
B> »
3.00
HTemp

") W ait: Linkil Mesk ms Mulkiple

millisecond multiple

Power

@ =

CrHE4

Q

Figure 4-24. Average Temperature VI Block Diagram

Right-click the right or left border of the While Loop and select
Add Shift Register from the shortcut menu to create a shift register.

Right-click the left terminal of the shift register and select Add
Element from the shortcut menu to add an element to the shift
register.

Press the <Ctrl> key while you click the Thermometer VI and drag
it outside the While Loop to create a copy of the subVL.

The Thermometer VI returns one temperature measurement from
the temperature sensor and initializes the left shift registers before
the loop starts.

Place the Compound Arithmetic function on the block diagram.

Configure this function to return the sum of the current temperature
and the two previous temperature readings.

Use the Positioning tool to resize the Compound Arithmetic
function to have three left terminals.

Place the Divide function on the block diagram. This function
returns the average of the last three temperature readings.

Wire the functions together as shown in Figure 4-24.

Right-click the y terminal of the Divide function and select Create»
Constant.

Enter 3 and press the <Enter> key.

5. Save the VI.

LabVIEW Introduction Course Manual

4-48 ni.com

Testing

3.

Lesson4 Implementing a VI

Run the VI.

If you have hardware installed, place your finger on the temperature
sensor of the DAQ Signal Accessory to increase the temperature
reading.

During each iteration of the While Loop, the Thermometer VI takes
one temperature measurement. The VI adds this value to the last two
measurements stored in the left terminals of the shift register. The VI
divides the result by three to find the average of the three measurements,
the current measurement plus the previous two. The VI displays the
average on the waveform chart. Notice that the VI initializes the shift
register with a temperature measurement.

Stop the VI by changing the state of the Power switch on the front panel.

4. Close the VI.

End of Exercise 4-4

© National Instruments Corporation

4-49 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

H. Plotting Data

You already used charts and graphs to plot simple data. This section explains
more about using and customizing charts and graphs.

Waveform Charts

The waveform chart is a special type of numeric indicator that displays one
or more plots of data typically acquired at a constant rate. Waveform charts
can display single or multiple plots. Figure 4-25 shows the elements of

a multiplot waveform chart. Two plots are displayed: Raw Data and
Running Avg.

@7* ‘wiavetorm Chart Running fwg.

Faw Data

N o

Tirme M'J—X it B 2| am ‘i'—(:)
Amplitude Eﬂﬂ

®

1
2

Label 3 X-scale 5 Graph Palette
Y-scale 4 Scale Legend 6 Plot Legend

LabVIEW Introduction Course Manual

Figure 4-25. Waveform Charts

You can configure how the chart updates to display new data.
Right-click the chart and select Advanced»Update Mode from the
shortcut menu to set the chart update mode. The chart uses the following
modes to display data:

Strip Chart—Shows running data continuously scrolling from left to
right across the chart with old data on the left and new data on the right.
A strip chart is similar to a paper tape strip chart recorder. Strip Chart
is the default update mode.

Scope Chart—Shows one item of data, such as a pulse or wave,
scrolling partway across the chart from left to right. For each new value,
the chart plots the value to the right of the last value. When the plot
reaches the right border of the plotting area, LabVIEW erases the plot

4-50 ni.com

Lesson4 Implementing a VI

and begins plotting again from the left border. The retracing display of
a scope chart is similar to an oscilloscope.

* Sweep Chart—Works similarly to a scope chart except it shows the old
data on the right and the new data on the left separated by a vertical line.
LabVIEW does not erase the plot in a sweep chart when the plot reaches
the right border of the plotting area. A sweep chart is similar to an EKG
display.

Figure 4-26 shows an example of each chart update mode. The scope chart
and sweep chart have retracing displays similar to an oscilloscope. Because
retracing a plot requires less overhead, the scope chart and the sweep chart
display plots significantly faster than the strip chart.

Strip Chart Scope Chart Sweep Chart

30.0-

80.0-

Figure 4-26. Chart Update Modes

Wiring Charts

You can wire a scalar output directly to a waveform chart. The waveform
chart terminal shown in Figure 4-27 matches the input data type.

Scope Chart

Figure 4-27. Wiring a Single Plot to a Waveform Chart

© National Instruments Corporation 4-51 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Waveform Graphs

Waveform charts can display multiple plots together using the Bundle
function located on the Cluster & Variant palette. In Figure 4-28, the
Bundle function bundles the outputs of the three VIs to plot on the waveform
chart.

lTemp

Eunde 5.
pe Chart
[reme A=)

Figure 4-28. Wiring Multiple Plots to a Waveform Chart

The waveform chart terminal changes to match the output of the Bundle
function. To add more plots, use the Positioning tool to resize the Bundle
function. Refer to Lesson 5, Relating Data, for more information about the
Bundle function.

VIs with a graph usually collect the data in an array and then plot the data
to the graph.Figure 4-29 shows the elements of a graph.

v srale name

\

@—> ‘Waweform Graph ®_> Ploc o | /@>

S

-~ % srale name Mﬂﬂ
y scale name Mﬂﬂ

Cursors: B Y | 4] ® |
£x Cursord =] 1.11111

1 1 1 1

20 40 Bl 100 hd g}

%

©

P = scale nanne | | *l

B | |

@

1 Plot Legend
2 Cursor
3 Grid Mark

4 Mini-Grid Mark 7 Cursor Legend 10 Y-Scale
5 Graph Palette 8 Scale Legend 11 Label
6 Cursor Mover 9 X-Scale

Figure 4-29. Waveform Graph

LabVIEW Introduction Course Manual 4-52 ni.com

Lesson4 Implementing a VI

The graphs located on the Graph Indicators palette include the waveform
graph and XY graph. The waveform graph plots only single-valued
functions, as in y = f(x), with points evenly distributed along the x-axis,
such as acquired time-varying waveforms. XY graphs display any set of
points, evenly sampled or not.

Resize the plot legend to display multiple plots. Use multiple plots to save
space on the front panel and to make comparisons between plots. XY and
waveform graphs automatically adapt to multiple plots.

Single Plot Waveform Graphs

The waveform graph accepts several data types for single-plot waveform
graphs. The graph accepts a single array of values, interprets the data as
points on the graph, and increments the x index by one starting at x = 0. The
graph accepts a cluster of an initial x value, a Ax, and an array of y data. The
graph also accepts the waveform data type, which carries the data, start time,
and At of a waveform.

Refer to the Waveform Graph VI in the 1abview\examples\general\
graphs\gengraph.11b for examples of the data types that a waveform
graph accepts.

Multiplot Waveform Graphs

The waveform graph accepts several data types for displaying multiple
plots. The waveform graph accepts a 2D array of values, where each row of
the array is a single plot. The graph interprets the data as points on the graph
and increments the x index by one, starting at x = 0. Wire a 2D array data
type to the graph, right-click the graph, and select Transpose Array from
the shortcut menu to handle each column of the array as a plot. This is
particularly useful when you sample multiple channels from a DAQ device
because the device can return the data as 2D arrays with each channel stored
as a separate column.

Refer to the (Y) Multi Plot 1 graph in the Waveform Graph VI in the

labview\examples\general\graphs\gengraph.1l1lb for an
example of a graph that accepts this data type.

The waveform graph also accepts a cluster of an initial x value, a Ax value,
and a 2D array of y data. The graph interprets the y data as points on the
graph and increments the x index by Ax, starting at the initial x value. This
data type is useful for displaying multiple signals that are sampled at the
same regular rate. Refer to the (Xo =10, dX =2, Y) Multi Plot 2 graph in
the Waveform Graph VI in the labview\examples\general\graphs\
gengraph.11b for an example of a graph that accepts this data type.

© National Instruments Corporation 4-53 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

The waveform graph accepts a plot array where the array contains clusters.
Each cluster contains a 1D array that contains the y data. The inner array
describes the points in a plot, and the outer array has one cluster for each
plot. The following front panel shows this array of the y cluster.

array af cluster of [v]

Use a plot array instead of a 2D array if the number of elements in each plot
is different. For example, when you sample data from several channels using
different time amounts from each channel, use this data structure instead of
a 2D array because each row of a 2D array must have the same number of
elements. The number of elements in the interior arrays of an array of
clusters can vary. Refer to the (Y) Multi Plot 2 graph in the Waveform Graph
VIin the labview\examples\general\graphs\gengraph.1llb for
an example of a graph that accepts this data type.

The waveform graph accepts a cluster of an initial x value, a delta x value,
and array that contains clusters. Each cluster contains a 1D array that
contains the y data. You use the Bundle function to bundle the arrays into
clusters and you use the Build Array function to build the resulting clusters
into an array. You also can use the Build Cluster Array function, which
creates arrays of clusters that contain the inputs you specify. Refer to the
(Xo =10,dX =2,Y) Multi Plot 3 graph in the Waveform Graph VI in the
labview\examples\general\graphs\gengraph.1l1lb for an
example of a graph that accepts this data type.

The waveform graph accepts an array of clusters of an x value, a delta x
value, and an array of y data. This is the most general of the multiple-plot
waveform graph data types because you can indicate a unique starting point
and increment for the x-scale of each plot. Refer to the (Xo = 10,dX =2,Y)
Multi Plot 1 graph in the Waveform Graph VI in the labview\examples\
general\graphs\gengraph.11b for an example of a graph that accepts
this data type.

The waveform graph also accepts the dynamic data type, which is for use
with Express VIs. In addition to the data associated with a signal, the
dynamic data type includes attributes that provide information about the
signal, such as the name of the signal or the date and time the data was
acquired. Attributes specify how the signal appears on the waveform graph.
When the dynamic data type includes multiple channels, the graph displays
a plot for each channel and automatically formats the plot legend and x-scale
time stamp.

LabVIEW Introduction Course Manual 4-54 ni.com

Lesson4 Implementing a VI

Single Plot XY Graphs

The XY graph accepts three data types for single-plot XY graphs. The XY
graph accepts a cluster that contains an x array and a y array. Refer to the
(X'and Y arrays) Single Plot graph in the XY Graph VI in the labview\
examples\general \graphs\gengraph.11b for an example of a graph
that accepts this data type.

The XY graph also accepts an array of points, where a point is a cluster that
contains an x value and a y value. Refer to the (Array of Pts) Single Plot
graph in the XY Graph VI in the labview\examples\general\
graphs\gengraph.11b for an example of a graph that accepts this data
type. The XY graph also accepts an array of complex data, in which the real
part is plotted on the x-axis and the imaginary part is plotted on the y-axis.

Multiplot XY Graphs

The XY graph accepts three data types for displaying multiple plots. The
XY graph accepts an array of plots, where a plot is a cluster that contains an
x array and a y array. Refer to the (X and Y arrays) Multi Plot graph in the
XY Graph Vlin the labview\examples\general\graphs\
gengraph.11b for an example of a graph that accepts this data type.

The XY graph also accepts an array of clusters of plots, where a plot is an
array of points. A point is a cluster that contains an x value and a y value.
Refer to the (Array of Pts) Multi Plot graph in the XY Graph VI in the
labview\examples\general\graphs\gengraph.1l1lb for an
example of a graph that accepts this data type. The XY graph also accepts
an array of clusters of plots, where a plot is an array of complex data, in
which the real part is plotted on the x-axis and the imaginary part is plotted
on the y-axis.

© National Instruments Corporation 4-55 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Exercise 4-5
Goal

Scenario

Design

LabVIEW Introduction Course Manual

Temperature Multiplot VI

Plot multiple data sets on a single waveform chart and customize the chart
view.

Modify the VI from Exercise 4-4 to plot both the current temperature and
the running average on the same chart. In addition, allow the user to examine
a portion of the plot while the data is being acquired.

Figure 4-30 shows the front panel for the existing VI (Average Temperature
VI) and Figure 4-31 shows the block diagram.

Termp

Temperature Hiskory
90,0
87.5-
85.0-
82,5
w
g a00-
&
775
75.0-
72.5-

70.0-]
0.0 5.0

Powwer

v
OFF

1
1.0

1
10.0
Time (sec)

20,0

Figure 4-30. Average Temperature VI Front Panel

To allow the user to examine a portion of the plot while the data is being
acquired, display the scale legend and the graph palette for the waveform
chart. Also, expand the legend to show additional plots.

To modify the block diagram in Figure 4-31, you must modify the chart
terminal to accept multiple pieces of data. Use a Bundle function to combine
the average temperature and the current temperature into a cluster to pass to
the Temperature History chart terminal.

4-56 ni.com

Lesson4 Implementing a VI

I Compound Arithnetic Temperature History

&> '

lTemp

HTem P

Wy ait Unkil Mext ms Multiple

millisecond multiple
Pawer

Figure 4-31. Average Temperature VI Block Diagram

Implementation

1. Open the VI created in Exercise 4-4. If you have hardware, follow the
instructions in the Hardware Installed column. Otherwise, follow the
instructions in the No Hardware Installed column.

Hardware Installed No Hardware Installed
Open Average Temperature VI in the Open Average Temperature VI in the
C:\Exercises\LabVIEW Basics I\ C:\Exercises\LabVIEW Basics I\
Average Temperature directory. No Hardware Required\Average

Temperature directory.

Select File»Save As and rename the VI Select File»Save As and rename the VI
Temperature Multiplot.vi inthe Temperature Multiplot.vi inthe
C:\Exercises\LabVIEW Basics I\ C:\Exercises\LabVIEW Basics I\
Temperature Multiplot directory. No Hardware Required\Temperature

Multiplot directory.

Tip Select the Substitute Copy for Original option to close the Average Temperature
VI and work in the Temperature Multiplot VI. You can create the directory if it does not
exist.

© National Instruments Corporation 4-57 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

In the steps below, you modify the block diagram similar to that shown in
Figure 4-32. Modify the block diagram first, then modify the front panel.

I Caompound Arithmetic I

I: Temperature Hiskary

HTe mp

HTemp
millisecond multiple Wiait Uikl Hext ms Multipls
Power

Figure 4-32. Temperature Multiplot VI Block Diagram
2. Open the block diagram.

3. Pass the current temperature and the average temperature to the
Temperature History chart terminal.

O Delete the wire connecting the Divide function to the Temperature
History chart terminal.

O Add a Bundle function between the Divide function and the
Temperature History chart terminal. If necessary, enlarge the
While Loop to make space.

Q Wire the output of the Divide function to the top input of the Bundle
function.

U Wire the current temperature to the bottom input of the Bundle
function. The current temperature is the output of the Thermometer
subVI inside the While Loop.

U Wire the output of the Bundle function to the Temperature History
chart terminal.

LabVIEW Introduction Course Manual 4-58 ni.com

Lesson4 Implementing a VI

In the following steps, modify the front panel similar to the one shown in
Figure 4-33.

Power
Temperature History
o

Q0,0 -
QFF 57.5-
85.0 -
82,5

(1
o 80.0-

[t
775
75.0-
72,5

70,0 - -

RFunning Avg m
Currenk Temp H

1 1 1 1 1 I
o 12 14 16 1§ Z0

o Z 4 & g
Timne (sec)
Time {sec) ME‘% ngﬂ
Deg F ey

Figure 4-33. Temperature Multiplot VI Front Panel

4. Open the front panel.

5. Show both plots in the plot legend of the waveform chart.

Q

¥

Use the Positioning tool to resize the plot legend to two objects,
using the top middle resizing node.

Rename the top plot Running Avg.

Rename the bottom plot Current Temp.

Change the plot type of Current Temp. Use the Operating tool to
select the plot in the plot legend and choose the plots you want.

wired to the Bundle function on the block diagram.

Tip The order of the plots listed in the plot legend is the same as the order of the items

6. Show the scale legend and graph palette of the waveform chart.

O Right-click the Temperature History waveform chart and select
Visible Items»Scale Legend from the shortcut menu.

O Right-click the Temperature History waveform chart and select
Visible Items»Graph Palette from the shortcut menu.

7. Save the VL

© National Instruments Corporation

4-59

LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Test

1. Run the VI. Use the tools in the scale legend and the graph palette to
examine the data as it is generated.

2. Change the Power switch to the Off position to stop the VI.

3. Close the VI when you are finished.

End of Exercise 4-5

LabVIEW Introduction Course Manual 4-60 ni.com

Lesson4 Implementing a VI

. Case Structures

A Case structure, shown as follows, has two or more subdiagrams, or cases.

4| True v

Only one subdiagram is visible at a time, and the structure executes only one
case at a time. An input value determines which subdiagram executes. The
Case structure is similar to switch statements or if...then...else statements in
text-based programming languages.

The case selector label at the top of the Case structure, shown as follows,
contains the name of the selector value that corresponds to the case in the
center and decrement and increment arrows on each side.

4| True ~]

Click the decrement and increment arrows to scroll through the available
cases. You also can click the down arrow next to the case name and select a
case from the pull-down menu.

Wire an input value, or selector, to the selector terminal, shown as follows,
to determine which case executes.

B

You must wire an integer, Boolean value, string, or enumerated type value
to the selector terminal. You can position the selector terminal anywhere on
the left border of the Case structure. If the data type of the selector terminal
is Boolean, the structure has a TRUE case and a FALSE case. If the selector
terminal is an integer, string, or enumerated type value, the structure can
have any number of cases.

Specify a default case for the Case structure to handle out-of-range values.
Otherwise, you must explicitly list every possible input value. For example,
if the selector is an integer and you specify cases for 1, 2, and 3, you must
specify a default case to execute if the input value is 4 or any other
unspecified integer value.

Right-click the Case structure border to add, duplicate, remove, or rearrange
cases, and to select a default case.

© National Instruments Corporation 4-61 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Selecting a Case

Figure 4-34 shows a VI that uses a Case structure to execute different code
dependent on whether a user selects degrees Celsius or Fahrenheit for their
desired temperature units. The top block diagram shows the True case in the
foreground. In the middle block diagram, the False case is selected. To select
a case, enter the value in the case selector identifier or use the Labeling tool
to edit the values. After you select another case, that case appears at the
front, as shown in the bottom block diagram of Figure 4-34.

i .
L

DA Assistant
data W BT

Temperature
¥

Temp Scale
» '
k
LA Assistank Temperature
data W B b

,. [Faz <3
L

DA Assistant
data 3 == 4kl

Temperature
¥

Temp Scale

Figure 4-34. Changing the Case View of a Case Structure

If you enter a selector value that is not the same type as the object wired to
the selector terminal, the value appears red to indicate that you must delete
or edit the value before the structure can execute, and the VI will not run.
Also, because of the possible round-off error inherent in floating-point
arithmetic, you cannot use floating-point numbers as case selector values. If
you wire a floating-point value to the case, LabVIEW rounds the value to
the nearest even integer. If you enter a floating-point value in the case
selector label, the value appears red to indicate that you must delete or edit
the value before the structure can execute.

LabVIEW Introduction Course Manual 4-62 ni.com

Lesson4 Implementing a VI

Input and OQutput Tunnels

You can create multiple input and output tunnels for a Case structure. Inputs
are available to all cases, but cases do not need to use each input. However,
you must define any output tunnel for each case.

Consider the following example: A Case structure on the block diagram has
an output tunnel, but in at least one of the cases, there is no output value
wired to the tunnel. If you run this case, LabVIEW does not know what
value to place in the output. LabVIEW indicates this error by leaving the
center of the tunnel white. The unwired case might not be the case that is
currently visible on the block diagram.

To correct this error, move to the case(s) that contain(s) the unwired output
tunnel and wire an output to the tunnel. You also can right-click the output
tunnel and select Use Default If Unwired from the shortcut menu to use the
default value for the tunnel data type for all unwired tunnels. When the
output is properly wired in all cases, the output tunnel is a solid color.

Avoid using the Use Default If Unwired option. Using this option does not
document the block diagram well, and can confuse other programmers using
your code. The Use Default If Unwired option also makes debugging your
code difficult. If you choose to use this option, be aware that the default
value used is the default value for the data type that is wired to the tunnel.
For example, if the tunnel is a Boolean data type, the default value is FALSE.
Use the Table 4-3 for assistance.

Table 4-3. Data Type Default Values

Data Type Default Value
Numeric 0
Boolean FALSE
String empty (“")

© National Instruments Corporation 4-63 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Examples

In the following examples, the numeric values pass through tunnels to the
Case structure and are either added or subtracted, depending on the value
wired to the selector terminal.

Boolean Case Structure

The following example is a Boolean Case structure. The cases overlap each
other to simplify the illustration.

If the Boolean control wired to the selector terminal is True, the VI adds the
numeric values. Otherwise, the VI subtracts the numeric values.

Integer Case Structure

The following example is an integer Case structure.

0, Default
' i
rurneric 2|
¥ i
|nteger

[uiew

Integer is a text ring control located on the Controls»Text Controls palette
that associates numeric values with text items. If the text ring control wired
to the selector terminal is 0 (add), the VI adds the numeric values. If the
value is 1 (subtract), the VI subtracts the numeric values. If the text ring
control is any other value than 0 (add) or 1 (subtract), the VI adds the
numeric values, because that is the default case.

LabVIEW Introduction Course Manual 4-64 ni.com

Lesson4 Implementing a VI

String Case Structure

The following example shows a string Case structure.

“add", Default [

k

M urneric 2|
[}

abc K

If String is add, the VI adds the numeric values. If String is subtract,
the VI subtracts the numeric values.

Enumerated Case Structure

The following example is an enumerated Case structure.

An enumerated type control gives users a list of items from which to select.
The data type of an enumerated type control includes information about the
numeric values and string labels in the control. The case selector displays
the string label for each item in the enumerated type control when you select
Add Case For Every Value from the Case structure shortcut menu. The
Case structure executes the appropriate case subdiagram based on the
current item in the enumerated type control. In the previous block diagram,
if Enum is add, the VI adds the numeric values. If Enum is subtract, the
VI subtracts the numeric values.

© National Instruments Corporation 4-65 LabVIEW Introduction Course Manual

Lesson 4

Implementing a VI

Using Case Structures for Error Handling

The following example shows a Case structure where an error cluster
defines the cases.

E Mo Errar 't

|
Read From
Measurement File Waveform Graph

Signals ¥
Errar in (no errar)

. efror ouk ¥
errar in (no errar) errar Uk

||Er 5|

rrw w

Teaf

Figure 4-35. No Error Case

E Errar Vt
Fasitive Infinity Waveform Graph
errar in (no errar) errar Uk
= i T-nm 5|

Figure 4-36. Error Case

When you wire an error cluster to the selector terminal of a Case structure,
the case selector label displays two cases—Error and No Error—and the
border of the Case structure changes color—red for Error and green for No
Error. If an error occurs, the Case structure executes the Error
subdiagram.

When you wire an error cluster to the selection terminal, the Case structure
recognizes only the status Boolean of the cluster.

LabVIEW Introduction Course Manual 4-66 ni.com

Exercise 4-6

Goal

Scenario

Design

Lesson4 Implementing a VI

Determine Warnings VI

Modify a VI to use a Case structure to make a software decision.

You created a VI where a user inputs a temperature, a maximum
temperature, and a minimum temperature. A warning string is generated
depending on the relationship of the given inputs. However, a situation
could occur that causes the VI to work incorrectly. The user could enter a
maximum temperature that is less than the minimum temperature. Modify
the VI so that a different string is generated to alert the user to the error:
"Upper Limit < Lower Limit." Setthe Warning? Boolean indicator
to True to indicate the error.

Modify the flowchart created for the original Determine Warnings VI as
shown in Figure 4-37.

© National Instruments Corporation

Output
Min. Temp > Current Temp Current Temp No Warning
Max Temp > Max Temp < Min. Temp and
FALSE
Output Output
Create Error Heat_stroke Freeze Warning
Warning and and
TRUE TRUE
\ 4
Output Y
Upper Limit ‘O
< Lower Limit = .
and TRUE
Figure 4-37. Modified Determine Warnings Flowchart

4-67

LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

The original block diagram for the Determine Warnings VI appears in
Figure 4-38. This VI must have a Case structure added to execute the code
if the maximum temperature is greater than or equal to the minimum
temperature. Otherwise, the code will not execute. Instead, a new string is
generated and the Warning? Boolean indicator is set to True.

Freeze YWarning

Currenk Temp

: &>

Warning Texk

Fibc]
Min Temp
)
IH=zatstroke Warning |
Warning?
Max Temp Mo W' arnin %

¥

Figure 4-38. Determine Warnings VI Block Diagram

LabVIEW Introduction Course Manual 4-68 ni.com

Lesson4 Implementing a VI

Implementation

Follow the instructions given below to modify the block diagram similar to
that shown in Figure 4-39. This VI is part of the temperature weather station

project.
M[False]
Current Temp Warning Text
. > g {isbe]|
Min Termp
v]
Warning?
Max Temp V#/
v]
Figure 4-39. Determine Warnings VI Block Diagram

1. Open the Determine Warnings VI in the C: \Exercises\
LabVIEW Basics I\Determine Warnings directory.

2. Open the block diagram.

3. Create space on the block diagram to add the Case structure.
The Max Temp and Min Temp controls and the Warning Text and
Warning? indicators should be outside of the new Case structure,
because both cases of the Case structure use these indicators and
controls.
Q Select the Min Temp and Max Temp control terminals.

@ Tip To select more than one item press the <Shift> key while you select the items.

O While the terminals are still selected, use the left arrow key on the
keyboard to move the controls to the left.

Q Select the Warning Text and Warning? indicator terminals.
O Align the terminals by selecting Align Objects»Left Edges.

O While the terminals are still selected, use the right arrow key on the
keyboard to move the indicators to the right.

© National Instruments Corporation 4-69 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

4. Compare Min Temp and Max Temp.

I::’}" Q

Q
Q
Q

Q

Add the Greater? function to the block diagram.
Wire the Min Temp output to the x input on the Greater? function.
Wire the Max Temp output to the y input on the Greater? function.

Add a Case structure around the block diagram code, except for the
excluded terminals.

Wire the output of the Greater? function to the case selector of the
Case structure.

5. If Min Temp is less than Max Temp, execute the code that determines
the warning string and boolean.

Q

While the True case is visible, right-click the border of the Case
structure, and select Make This Case False from the shortcut menu.
When you create a Case structure around existing code, the code is
automatically placed in the True case.

6. If Min Temp is greater than Max Temp, create a custom string for the
Warning Text indicator and set the Warning? indicator to True, as
shown in Figure 4-40.

Min Temp

Mazx Temp
H J

] True 't

Warning Text
pper Limit < Lawer Limit pabc]

Warning?

Figure 4-40. Determine Warnings VI Block Diagram

O Select the True case.

U Right-click the string output tunnel.

U Select Create»Constant.

LabVIEW Introduction Course Manual

4-70 ni.com

Testing

Lesson4 Implementing a VI

U Enter Upper Limit < Lower Limit in the constant.

O Right-click the Boolean output tunnel.

O Select Create»Constant.

O Use the Operating tool to change the constant to a True constant.

Save the VI.

Switch to the front panel of the VI.

Resize the Warning Text indicator to a length to accommodate the new
string.

Test the VI by entering values from Table 4-4 for Current Temp, Max
Temp, and Min Temp, and running for each set.

Table 4-4 shows the expected Warning Text and Warning? Boolean
value for each set of inputs.

Table 4-4. Testing Values for Determine Warnings.vi

Current Temp | Max Temp | Min Temp Warning Text Warning?
30 30 10 Heatstroke Warning True
25 30 10 No Warning False
10 30 10 Freeze Warning True
25 20 30 Upper Limit < Lower | True
Limit

© National Instruments Corporation

4. Save and close the VI.

End of Exercise 4-6

4-71 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

J. Formula Nodes

When you want to use a complicated equation in LabVIEW, you do not have
to wire together various arithmetic functions on the block diagram. You can
develop equations in a familiar, mathematical environment and then
integrate the equations into an application.

The Formula Node is a convenient text-based node you can use to perform
mathematical operations on the block diagram. You do not have to access
any external code or applications, and you do not have to wire low-level
arithmetic functions to create equations. In addition to text-based equation
expressions, the Formula Node can accept text-based versions of if
statements, while loops, for loops, and do loops, which are familiar to

C programmers. These programming elements are similar to what you find
in C programming but are not identical.

Formula Nodes are useful for equations that have many variables or are
otherwise complicated and for using existing text-based code. You can copy
and paste the existing text-based code into a Formula Node rather than
recreating it graphically.

Create the input and output terminals of the Formula Node by right-clicking
the border of the node and selecting Add Input or Add Output from the
shortcut menu, then enter the variable for the input or output. Enter the
equation in the structure. Each equation statement must terminate with a
semicolon (;).

You also can use Formula Nodes for decision making. The following block
diagram shows two different ways of using an i f-then statement in a
Formula Node. The two structures produce the same result.

Faorrmula Mode

w= (x==0) 7 sqrk {x):
Yalue -99999; Square Root Yalue

¥]

ﬁ

Faorrmula Mode

floatés v;
if{x==0) Squate Rook Yalue 2
y=sart{x); »

I else y=-29339; I

The Formula Node can perform many different operations. Refer to the
LabVIEW Help for more information about functions, operations, and
syntax for the Formula Node.

LabVIEW Introduction Course Manual 4-72 ni.com

Lesson4 Implementing a VI

@ Note The Formula Express VI uses a calculator interface to create mathematical
formulas. You can use this Express VI to perform most math functions that a basic
scientific calculator can compute. Refer to the LabVIEW Help for more information
about the Formula Express VI.

© National Instruments Corporation 4-73 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Exercise 4-7 Self-Study: Square Root VI

Goal
Create a VI that uses a Case structure to make a software decision.
Scenario
Build a VI that calculates the square root of a number the user enters. If the
number is negative, display the following message to the user:
Error... Cannot find the square root of a negative
number.
Design

Inputs and Outputs

Table 4-5. Inputs and Outputs

Type Name Properties
Input Number Double-precision, floating
point; default value of 25
Output Square Root Value Double-precision, floating
point
Flowchart
Displ
o | Oery
Dialog
Yes T
Find Square
Root of
Number

LabVIEW Introduction Course Manual

4-74

Figure 4-41. Square Root VI Flowchart

ni.com

Implementation

Lesson4 Implementing a VI

Open a blank VI and build the front panel shown in Figure 4-42.

Murnber Square Root Value
9'0 a0 ID 0o

Figure 4-42. Square Root VI Front Panel
Add a numeric control to the front panel.
Q Name the numeric control Number.
Add a numeric indicator to the front panel.

U Rename the numeric indicator Square Root Value.

Build the block diagram shown in Figure 4-43.

2 Square Rook Yalue
il -99939,0 J
Greater Cr

Mumber Equal To 07 MESSage

k

(],

rrar...
egative Mumber

One Button Dialog

-99993.0

© National Instruments Corporation

Figure 4-43. Square Root VI Block Diagram

Determine whether Number is greater than or equal to zero, because
you cannot calculate the square root of a negative number.

U Add the Greater or Equal to 0? function to the right of the Number
terminal. This function returns True if Number is greater than or
equal to 0.

U Wire Number to the input of the Greater or Equal to 0? function.

If Number is less than 0, display a dialog box that informs the user of
the error.

 Add the Case structure to the block diagram.
U Click the decrement or increment button to select the False case.

U Add a numeric constant to the False case.

4-75 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

U 0O 0 U 0

Q

Q

Right-click the numeric constant and select Representation»I32.
Enter -99999 in the numeric constant.

Wire the numeric constant to the right edge of the case structure.
Wire the new tunnel to the Square Root Value terminal.

Add the One Button Dialog function to the False case. This function
displays a dialog box that contains a specified message.

Right-click the message input of the One Button Dialog function
and select Create»Constant from the shortcut menu

Enter Error. . .Negative Number in the constant.

Finish wiring the False case as shown in Figure 4-43.

6. If Number is greater than or equal to 0, calculate the square root of the
number.

Q

&>

Q

Select the True case of the Case structure.

Place the Square Root function in the True case. This function
returns the square root of Number.

Wire the function as shown in Figure 4-44.

] True "t]

Squate Rook Square Fook Yalue

] [g
Greater Or
P Equal To 07

Figure 4-44. True Case of Square Root VI

7. Save the VI as Square Root.vi inthe C:\Exercises\LabVIEW
Basics I\Square Root directory.

LabVIEW Introduction Course Manual

4-76 ni.com

Lesson4 Implementing a VI

Testing
1. Display the front panel.
2. Enter a positive number in the Number control.
3. Runthe VL.
4. Enter a negative number in the Number control.
A Caution Do not run this VI continuously. Under certain circumstances, continuously

running this VI could result in an endless loop.

5. Run the VL.

If Number is positive, the VI executes the True case and returns
the square root of Number. If Number is negative, the VI executes
the False case, returns -99999, and displays a dialog box with

the message Error. . .Negative Number.

6. Close the VI.

End of Exercise 4-7

© National Instruments Corporation 4-77 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Exercise 4-8 Self-Study: Determine Warnings VI (Challenge)

Modify an existing VI to use the Formula Node or a Case structure to make

In the Determine Warnings VI from Exercise 4-1, you used the Select
function to pass a string based on decision. Revise this block diagram to use
either a Formula Node or a Case structure (or a combination of both) to

Goal

a software decision.
Scenario

complete the same purpose.
Design

Inputs and Outputs

Table 4-6. Determine Warnings VI Inputs and Outputs

Type

Name

Properties

Numeric Control

Current Temp

Double-precision,
floating-point

LabVIEW Introduction Course Manual

Numeric Control Max Temp Double-precision,
floating-point

Numeric Control Min Temp Double-precision,
floating-point

String Indicator Warning Text Three potential values:
Heatstroke Warning, No
Warning, and Freeze Warning

Round LED Warning? —

4-78 ni.com

Lesson4 Implementing a VI

Flowchart

Figure 4-45 shows the flowchart you used in Exercise 4-1 to create the
Determine Warnings VI.

Current Temp
>=Max Temp?

Yes

v

Warning Text =
Heatstroke
Warning

Warning Text =
No Warning

Current Temp
<= Min Temp?

Yes
Warning Text = Pass current value
Freeze Warning of Warning Text

Warning
Text = No
Warning?

Yes

Warning ? = False Warning ? = True

o

Figure 4-45. Determine Warnings VI Flowchart

© National Instruments Corporation 4-79 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Implementation

As part of the challenge, no implementation instructions are given for this
exercise. The VI you should start from is located in the C: \Exercises\
LabVIEW Basics I\Determine Warnings Challenge directory.

If you need assistance, open the solution VIs. The solutions are located in
C:\Solutions\LabVIEW Basics I\Exercise 4-8 directory.

End of Exercise 4-8

LabVIEW Introduction Course Manual 4-80 ni.com

Exercise 4-9
Goal

Scenario

Design

Lesson 4

Implementing a VI

Self-Study: Determine More Warnings VI

Manipulate strings using String functions.

You have a VI that determines whether a Heatstroke Warning or a Freeze

Warning has occurred, based on temperature input. You must expand this VI
so that it also determines whether a High Wind Warning has occurred based
on a wind speed reading and a maximum wind speed setting. The warnings
must be displayed as a single string. For example, if a Heatstroke Warning
and a High Wind Warning has occurred, the string should read: Heatstroke
and High Wind Warning.

Inputs and Outputs

Table 4-7. Determine More Warnings VI Inputs and Outputs

Type Name Properties

Numeric Current Temp Double-precision

Control

Numeric Max Temp Double-precision

Control

Numeric Min Temp Double-precision

Control

Numeric Current Wind Double-precision

Control Speed

Numeric Max Wind Speed Double-precision

Control

String Warning Text Potential values: Heatstroke

Indicator Warning, Freeze Warning,
Heatstroke and High Wind
Warning, Freeze and High Wind
Warning, High Wind Warning and
No Warning

Boolean Warning? Boolean

Indicator

4-81 LabVIEW Introduction Course Manual

© National Instruments Corporation

Lesson4 Implementing a VI

Flowchart

The flowchart shown in Figure 4-46 was used for the Determine Warnings
VL. In this VI, wind data is not taken. Modify this flowchart to determine the

High Wind Warning as well.

Yes

Warning Text = i =
Heatstroke Wﬁgnwg;\?r):t -
Warning ¢

Yes
Warning Text = Pass current value
Freeze Warning of Warning Text

Warning
Text = No
Warning?

Yes

Warning ? = False Warning ? = True

é

Figure 4-46. Determine Warnings VI Flowchart

LabVIEW Introduction Course Manual 4-82 ni.com

Lesson4 Implementing a VI

The flowchart shown in Figure 4-47 is a modified version of the flowchart,
designed to determine the High Wind Warning, in addition to the warnings
already determined.

Min Temp No

Max Temp

Yes

Current Wind
2 Max Wind?

Current Temp
2 Max Temp?

Current Temp
< Min. Temp?

Create Create Create Create Create Create
“Heatstroke” Empty “Freeze” Empty “High Wind” Empty
String String String String String String
A | | | |
Output *
Upper Limit -
< Lower Limit Combine
and TRUE Strings y

Combine and Display
Warning Text;
Determine and

Display Warning?

) 4

®

Figure 4-47. Determine More Warnings VI Flowchart

VI Architecture

There are many ways to write this program. In this exercise, you use Case
structures to determine what string to pass, and Concatenate Strings
functions to merge strings together.

© National Instruments Corporation 4-83 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Implementation

[
=

+ |

1

A portion of this VI has already been built for you. The front panel of the VI
is shown in Figure 4-48. This front panel retrieves from the user the current
temperature, the maximum temperature, the minimum temperature, the
current wind speed and the maximum wind speed and displays to the user
the warning string and the warning Boolean. This VI is not used in the
Weather Station project in this course.

Figure 4-48. Determine More Warnings Front Panel

1. Open the Determine More Warnings.vi inthe C:\Exercises\
LabVIEW Basics I\Determine More Warnings directory.

Create a block diagram similar to Figure 4-49.
2. Open the block diagram.

3. Use Figures 4-49 through 4-53 to assist you in building the block
diagram code.

4. You use the following block diagram objects in this exercise:
U Case structure.

O Empty String constant.

(W

Space constant.

(]

Equal? function.

(W

Concatenate Strings function.

LabVIEW Introduction Course Manual 4-84 ni.com

Implementing a VI

Lesson 4

EPERT

_ *BuULs BUILIEs: [Ny 23eaud 0] sEuLgs m._.__n_c._n_u_

_mr___.:m_.{,_ oz—

BuLgs duay pabaal :i._m_m—!sz

"PUI, XEWE=S PUlA, JUSANG JT

BLILLIE, P, YBIH sy

4= =]

1
paads pUli, XEk

A_)

pasds puiy, JURNT

BILLIE iy, 2233 UaL]
‘dwa) uly == dwa] Juaiind Ji

EEEEEY

4= =]

4= o]

BuULLIE s, Sq0U3512aH Ua))
'dwa] xe) =< dua] Juand JI

1
dwa] Juauno

]
dwa) ui)

‘Bojelp Jouia
a1ea.dd fdway|
LIl UELy] 553

51 duiay xewl

1
dwa] xely

Figure 4-49. Determine More Warnings Block Diagram

LabVIEW Introduction Course Manual

4-85

© National Instruments Corporation

Lesson4 Implementing a VI

Figure 4-50. True Cases for When Temperature and Wind Warnings
Are Not Generated

T[False ~pf

Space Conskant.vi

and

wWatnin

Figure 4-52. False Cases for When Wind and Temperature Warnings Are Generated

LabVIEW Introduction Course Manual 4-86 ni.com

Lesson4 Implementing a VI

Space Cor

Figure 4-53. False Case for When a Wind Warning is Generated

5. Save the VI.

Test
1. Test the following values to be sure your VI works as expected.
Table 4-8. Weather Test Values
Name Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Current Temp 20 30 10 30 10 20
Max Temp 25 25 25 25 25 25
Min Temp 15 15 15 15 15 15
Current Wind 25 25 25 35 35 35
Speed
Max Wind 30 30 30 30 30 30
Speed
Warning Text | No Warning Heatstroke Freeze Heatstroke Freeze and High Wind
Warning Warning and High High Wind Warning
Wind Warning
Warning
Warning? False True True True True True

2. Close and save the VI when you are finished.

End of Exercise 4-9

© National Instruments Corporation 4-87 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Self-Review: Quiz

1. Which of the following identifies the control or indicator on the block
diagram?

a. Caption
b. Location
c. Label
d. Value
2. Which of the following structures must run at least one time?
a. While Loop

b. For Loop

3. Which of the following is ONLY available on the block diagram?
a. Control
b. Constant

c. Indicator
d. Connector pane

4. Which mechanical action causes a Boolean in the False state to change
to True when you click it and stay True until you release it and
LabVIEW has read the value?

a. Switch until released
b. Switch when released
c. Latch until released

d. Latch when released

© National Instruments Corporation 4-89 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Self-Review: Quiz Answers

1. Which of the following identifies the control or indicator on the block
diagram?

a. Caption
b. Location
c. Label
d. Value
2. Which of the following structures must run at least one time?
a. While Loop

b. For Loop

3. Which of the following is ONLY available on the block diagram?
a. Control
b. Constant

c. Indicator
d. Connector pane

4. Which mechanical action causes a Boolean in the False state to change
to True when you click it and stay True until you release it and
LabVIEW has read the value?

a. Switch until released
b. Switch when released

Latch until released

e oo

Latch when released

© National Instruments Corporation 4-91 LabVIEW Introduction Course Manual

Lesson4 Implementing a VI

Notes

LabVIEW Introduction Course Manual 4-92 ni.com

Relating Data

Sometimes it is beneficial to group data related to one another. Use arrays
and clusters to group related data in LabVIEW. Arrays combine data of the
same datatype into one data structure, and clusters combine data of multiple
datatypes into one data structure. Use type definitions to define custom
arrays and clusters. This lesson explains arrays, clusters, and type
definitions, and applications where using these can be beneficial.

Topics

A. Arrays
B. Clusters
C. Type Definitions

© National Instruments Corporation 5-1 LabVIEW Introduction Course Manual

Lesson5 Relating Data

A. Arrays

An array consists of elements and dimensions. Elements are the data that
make up the array. A dimension is the length, height, or depth of an array.
An array can have one or more dimensions and as many as (23!) — 1 elements
per dimension, memory permitting.

You can build arrays of numeric, Boolean, path, string, waveform, and
cluster data types. Consider using arrays when you work with a collection
of similar data and when you perform repetitive computations. Arrays are
ideal for storing data you collect from waveforms or data generated in loops,
where each iteration of a loop produces one element of the array.

Restrictions

You cannot create arrays of arrays. However, you can use a
multidimensional array or create an array of clusters where each cluster
contains one or more arrays. Also, you cannot create an array of subpanel
controls, tab controls, .NET controls, ActiveX controls, charts, or multiplot
XY graphs.

Refer to the clusters section of this lesson for more information about clusters.

An example of a simple array is a text array that lists the nine planets of our
solar system. LabVIEW represents this as a 1D array of strings with nine
elements.

Array elements are ordered. An array uses an index so you can readily
access any particular element. The index is zero-based, which means it is in
the range O to n — 1, where n is the number of elements in the array. For
example, n = 9 for the nine planets, so the index ranges from O to 8. Earth is
the third planet, so it has an index of 2.

Figure 5-1 shows an example of an array of numerics. The first element shown
in the array (3.00) is at index 1, and the second element (1. 00) is at index 2.
The element at index 0 is not shown in this image, because element 1 is
selected in the index display. The element selected in the index display always
refers to the element shown in the upper left corner of the element display.

O—» 1)1 FI ¢ [
| |

®

1 Index Display 2 Element Display

Figure 5-1. Array Control of Numerics

LabVIEW Introduction Course Manual 5-2 ni.com

Lesson5 Relating Data

Creating Array Controls and Indicators

Create an array control or indicator on the front panel by placing an array
shell on the front panel, as shown in the following figure, and dragging a
data object or element, which can be a numeric, Boolean, string, path,
refnum, or cluster control or indicator, into the array shell.

Brray

Figure 5-2. Placing a Numeric Control in an Array Shell

If you attempt to drag an invalid control or indicator such as an XY graph
into the array shell, you are unable to drop the control or indicator in the
array shell.

You must insert an object in the array shell before you use the array on the
block diagram. Otherwise, the array terminal appears black with an empty
bracket and has no data type associated with it.

Two-Dimensional Arrays

The previous examples use 1D arrays. A 2D array stores elements in a grid.
It requires a column index and a row index to locate an element, both of
which are zero-based. The following figure shows an 8 column by 8 row
2D array, which contains 8 x 8 = 64 elements.

Columi Indey
0 1 2 3 4 & G)

How Index

b T = N L T R = R e

© National Instruments Corporation 5-3 LabVIEW Introduction Course Manual

Lesson 5

Relating Data

To create a multidimensional array on the front panel, right-click the index
display and select Add Dimension from the shortcut menu. You also can
resize the index display until you have as many dimensions as you want.

Initializing Arrays

You can initialize an array or leave it unitialized. When an array is
initialized, you defined the number of elements in each dimension and the
contents of each element. An uninitialized array contains a fixed number of
dimensions but no elements. Figure 5-3 shows an uninitialized 2D array
control. Notice that the elements are all dimmed. This indicates that the
array is unitialized.

j’)"3_ o i} n
1)"3_ ’ 0 ’ 0 ’ i}
e’

Ao Ao o

Figure 5-3. Two Dimensional Uninitialized Array

In Figure 5-4, six elements are initialized. In a 2D array, after you initialize
an element in a row, the remaining elements in that row are initialized and
populated with the default value for the data type. For example, in

Figure 5-4, if you type 4 into the element in the first column, third row, the
elements in the second and third column in the third row are automatically
populated with a 0.

) Array
- O C o o o
1}|U_ Js \f 0 5] 10 Ao

i = i

=

= [o o - @

Figure 5-4. An Initialized Two Dimensional Array with Six Elements

Creating Array Constants

To create an array constant on the block diagram, select an array constant on
the Functions palette, add the array shell to the block diagram, and add a
string constant, numeric constant, or cluster constant in the array shell. You
can use an array constant to store constant data or as a basis for comparison
with another array.Array constants also are useful for passing data into a
subVI.

Auto-Indexing Array Inputs

If you wire an array to or from a For Loop or While Loop, you can link each
iteration of the loop to an element in that array by enabling auto-indexing.

LabVIEW Introduction Course Manual 5-4 ni.com

Lesson5 Relating Data

O] The tunnel image changes from a solid square to the image shown at left to
indicate auto-indexing. Right-click the tunnel and select Enable Indexing
or Disable Indexing from the shortcut menu to toggle the state of the tunnel.

Array Inputs

If you enable auto-indexing on an array wired to a For Loop input terminal,
LabVIEW sets the count terminal to the array size so you do not need to wire
the count terminal. Because you can use For Loops to process arrays an
element at a time, LabVIEW enables auto-indexing by default for every
array you wire to a For Loop. Disable auto-indexing if you do not need to
process arrays one element at a time.

In Figure 5-5, the For Loop executes a number of times equal to the number
of elements in the array. Normally, if the count terminal of the For Loop is
not wired, the run arrow is broken. However, in this case the run arrow is not
broken.

B> Auto Index Input.vi Block Diagram

File Edit Operate Tools Browse ‘Window Help
> [@] @@“.,ullmuﬁ [13t Application Fert: |~ ||;;,-|
~
N
Array
4]|
m [
W
< >

Figure 5-5. Array Used to Set For Loop Count

If you enable auto-indexing for more than one tunnel or if you wire the count
terminal, the count becomes the smaller of the choices. For example, if two
auto-indexed arrays enter the loop, with 10 and 20 elements respectively,
and you wire a value of 15 to the count terminal, the loop executes 10 times,
and the loop indexes only the first 10 elements of the second array.

© National Instruments Corporation 5-5 LabVIEW Introduction Course Manual

Lesson 5

Relating Data

Array Outputs

When you auto-index an array output tunnel, the output array receives a new
element from every iteration of the loop. Therefore, auto-indexed output
arrays are always equal in size to the number of iterations.

The wire from the output tunnel to the array indicator becomes thicker as it
changes to an array at the loop border, and the output tunnel contains square
brackets representing an array, as shown Figure 5-6.

Random

Mumber {0-1) Array
=

Figure 5-6. Auto-Indexed Output

Right-click the tunnel at the loop border and select Enable Indexing or
Disable Indexing from the shortcut menu to enable or disable
auto-indexing. Auto-indexing for While Loops is disabled by default.

For example, disable auto-indexing if you need only the last value passed
out of the tunnel.

Creating Two-Dimensional Arrays

You can use two For Loops, one inside the other, to create a 2D array.
The outer For Loop creates the row elements, and the inner For Loop
creates the column elements, as shown in Figure 5-7.

Rowws

E—IN

Columns
N

Randorm

Array

[d

Figure 5-7. Creating a Two-Dimensional Array

LabVIEW Introduction Course Manual 5-6 ni.com

Lesson5 Relating Data

Exercise 5-1 Concept: Manipulating Arrays
Goal

Manipulate arrays using various LabVIEW functions.

Description

You are given a VI and asked to enhance it for a variety of purposes. For
each part of this exercise, begin with the Array Investigation.vi
located in the C: \Exercises\LabVIEW Basics I\Manipulating
Arrays directory. The front panel of this VI is shown in Figure 5-8.

Calumns . Array

) 80 f")lﬂ_ 0 0 0 0 0 0 0

— ’—/JID_ 0 0 0 0 0 0 0

5”80— 0 0 0 0 0 0 0
0 0 0 0 0 0 0
i 0 0 0 i 0 0
0 0 0 0 0 0 0
i i 0 0 i i i
0 0 0 0 0 0 0

Figure 5-8. Array Investigation VI Front Panel

Figure 5-9 shows the block diagram of this VI.

Array

K3 41 |

Figure 5-9. Array Investigation VI Block Diagram

In this exercise, you are given the scenario for each part first. If you want
detailed implementation instructions, they are given for each part at the end
of this exercise.

Part 1: Iterate, Modify, and Chart Array

Modify the Array Investigation VI so that after the array is created, the array
is indexed into For Loops where you multiply each element of the array by
100 and coerce each element to the nearest whole number. Graph the
resulting 2D array to an intensity chart.

© National Instruments Corporation 5-7 LabVIEW Introduction Course Manual

Lesson5 Relating Data

Part 2: Simplified Iterate, Modify, and Chart Array

Modify the Array Investigation VI or the solution from Part 1 to accomplish
the same goals without using the nested For Loops.

Part 3: Create Subset Arrays

Modify the Array Investigation VI so that the VI creates a new array that
contains the contents of the third row, and another new array that contains
the contents of the second column.

LabVIEW Introduction Course Manual 5-8 ni.com

Part 1: Implementation

Lesson5 Relating Data

Modify the Array Investigation VI so that after the array is created, the array
is indexed into For Loops where you multiply each element of the array by
100 and coerce each element to the nearest whole number. Graph the
resulting 2D array to an intensity chart.

1. Open Array Investigation.vi locatedin the C:\Exercises\
LabVIEW Basics I\Manipulating Arrays directory.

2. Save the VI as Array Investigation Part 1.vi.

2 3. Add an intensity chart to the front panel of the VI, as shown in
lE Figure 5-10.
Colunns . Array
Raws j—)|D_ 10.09983; |0.19866¢ 0.29552 |0.38941¢ |0.47942t |0.56464¢ |0.64421¢
;)'F’U— 10,1986 1029552 0.389411 |0.47942¢ |0.56464¢ |0.64421¢ |0.71735¢

|u.29552 |0,389416 |0.47942¢ |0.56454 |0.64421¢ |0.71735¢ |0.76332:

J0.38941¢ |0.479421 |0.56464; |0.64421¢ 0.71735¢ |0.76332: |0.84147:

ID.4?942E |0.56464: |0.64421¢ 10.71735¢ |0.78332: |0.84147: |0.891200

J0.56464: |0.64421¢ |0.71735¢ |0.78332: |0.84147: |0.89120: |0.93203¢

|0.64421¢ |0.71735¢ |0.78332; |0.84147. |0,89120; |0.93203¢ |0.96355¢

Intensity Chart
—-100

20—
40~
h=d
- 2
2 30— S0 F
2 -3
£ 20-
10- -0
0=
1]
Tirne
Figure 5-10. Array Investigation Part 1 VI Front Panel
4. Open the block diagram of the VI.
5-9 LabVIEW Introduction Course Manual

© National Instruments Corporation

Lesson5 Relating Data

In the following steps, you create a block diagram similar to that in
Figure 5-11.

Intensity Chart

-1 rra ~ - I> L L L
B %> —;:‘Jj L F:] 100 Iii>
m (O y

Figure 5-11. Array Investigation Part 1 VI Block Diagram
5. TIterate Array.
@ O Add a For Loop to the right of the existing code.
U Add a second For Loop inside the first For Loop.

Q Wire the array indicator terminal to the interior For Loop border.
This creates an auto-indexed input tunnel on both For Loops.

6. Multiply each element of the array by 100.
I:’:"}' Q Add a Multiply function to the interior For Loop.

Q Wire the indexed input tunnel to the x terminal of the Multiply
function.

O Right-click the y terminal and select Create»Constant from the
shortcut menu.

U Enter 100 in the constant.
7. Round each element to the nearest whole number.

O Add a Round To Nearest function to the right of the Multiple
IEI> function.

QO Wire the output of the Multiply function to the input of the Round
To Nearest function.

8. Create a 2D array on the output of the For Loops to recreate the modified
array.

Q Wire the output of the Round To Nearest function to the outer For
Loop. This creates an auto-indexed output tunnel on both For Loops.

LabVIEW Introduction Course Manual 5-10 ni.com

9.

Lesson5 Relating Data

Wire the output array to the intensity chart.

10. Switch to the front panel.

11. Save the VI.

12. Enter values for Rows and Columns.

13. Run the VL.

Part 2: Implementation

Modify Part 1 to accomplish the same goals without using the nested For

Loops.

1. Open Array Investigation Part 1.vi ifitis not still open.

2. Save the VI as Array Investigation Part 2.vi.

3. Open the block diagram.

4. Right-click the border of the interior For Loop, containing the Multiply
function and the Round to Nearest function, and select Remove For
Loop.

5. Right-click the border of the remaining For Loop and select Remove

For Loop from the shortcut menu. Your block diagram should resemble
the one shown in Figure 5-12.

Intensity Chart

Array I> B:} _

© National Instruments Corporation

Figure 5-12. Array Investigation Part 2 VI Block Diagram
Save the VL.
Switch to the front panel.
Enter values for Rows and Columns.

Run the VI.

5-11 LabVIEW Introduction Course Manual

Lesson5 Relating Data

Notice that the VI behaves the same as in Part 1. This is because
mathematical functions are polymorphic. For example, because the x input
of the Multiply function is a two-dimensional array, and the y input is a
scalar, the Multiply function multiplies each element in the array by the
scalar, and outputs an array of the same dimension as the x input.

Part 3: Implementation

Modify Array Investigation VI so that the VI creates a new array that
contains the contents of the third row, and another new array that contains
the contents of the second column.

1. Open Array Investigation.vi locatedin the C:\Exercises\
LabVIEW Basics I\Manipulating Arrays directory.

2. Save the VI as Array Investigation Part 3.vi.
3. Open the block diagram of the VI.

In the following steps, you build a block diagram similar to that shown in
Figure 5-13.

Return third row
@ Third Row

B
Return second column

@ Second Column

:ZI 2 '

Figure 5-13. Array Investigation Part 3 VI Block Diagram

4. Retrieve the third row of data from Array using the Index Array
function.

i O Add the Index Array function to the block diagram.

U Wire Array to the array terminal of Index Array.

@ Tip The Index Array function accepts an n-dimensional array. After you wire the input
array to the Index Array function, the input and output terminal names change to match
the dimension of the array wired. Therefore, wire the input array to the Index Array
function before wiring any other terminals.

U Right-click the index(row) terminal of the Index Array function.

LabVIEW Introduction Course Manual 5-12 ni.com

Lesson5 Relating Data

U Select Create»Constant from the shortcut menu.

U Enter 2 in the constant to retrieve the third row because the index
begins at zero.

O Right-click the subarray output of the Index Array function.
Q Select Create»Indicator from the shortcut menu.
O Rename the indicator to Third Row.

5. Retrieve the second column of data from the Array using the Index
Array function.

B U Add another Index Array function to the block diagram.

Q Wire Array to the array terminal of the Index Array function.

O Right-click the disable index(col) terminal of the Index Array
function.

U Select Create»Constant.

U Enter 1 in the constant to retrieve the second column because the
index begins at zero.

O Right-click the subarray output of the Index Array function.
O Select Create»Indicator.
O Rename the indicator to Second Column.

6. Save the VI.

7. Switch to the front panel.

8. Enter values for Rows and Columns.

9. Run the VI.

End of Exercise 5-1

© National Instruments Corporation 5-13 LabVIEW Introduction Course Manual

Lesson5 Relating Data

B. Clusters

Clusters group data elements of mixed types. An example of a cluster is the
LabVIEW error cluster, which combines a Boolean value, a numeric value,
and a string. A cluster is similar to a record or a struct in text-based
programming languages.

Refer to the Error Checking and Error Handling topic of the LabVIEW
Help for more information about using error clusters.

Bundling several data elements into clusters eliminates wire clutter on the
block diagram and reduces the number of connector pane terminals that
subVIs need. The connector pane has, at most, 28 terminals. If your front
panel contains more than 28 controls and indicators that you want to pass to
another VI, group some of them into a cluster and assign the cluster to a
terminal on the connector pane.

Most clusters on the block diagram have a pink wire pattern and data type
terminal. Clusters of numeric values, sometimes referred to as points, have
a brown wire pattern and data type terminal. You can wire brown numeric
clusters to Numeric functions, such as Add or Square Root, to perform the
same operation simultaneously on all elements of the cluster.

Order of Cluster Elements

Although cluster and array elements are both ordered, you must unbundle
all cluster elements at once or use the Unbundle By Name function to access
specific cluster elements. Clusters also differ from arrays in that they are a
fixed size. Like an array, a cluster is either a control or an indicator. A cluster
cannot contain a mixture of controls and indicators.

Creating Cluster Controls and Indicators

Create a cluster control or indicator on the front panel window by adding a
cluster shell to the front panel window, as shown in the following figure, and
dragging a data object or element, which can be a numeric, Boolean, string,
path, refnum, array, or cluster control or indicator, into the cluster shell.

Resize the cluster shell by dragging the cursor while you place the cluster
shell.

LabVIEW Introduction Course Manual 5-14 ni.com

Lesson5 Relating Data

Cluster

Figure 5-14. Creation of a Cluster Control

Figure 5-15 is an example of a cluster containing three controls: a string, a
Boolean switch, and a numeric. A cluster is either a control or an indicator;
it cannot contain a mixture of controls and indicators.

Student

WETS

Graduated? Age

¥ [0 N i)lu

Figure 5-15. Cluster Control Example

Creating Cluster Constants

To create a cluster constant on the block diagram, select a cluster constant
on the Functions palette, add the cluster shell to the block diagram, and add
a string constant, numeric constant, or cluster constant to the cluster shell.
You can use a cluster constant to store constant data or as a basis for
comparison with another cluster.

If you have a cluster control or indicator on the front panel window and you
want to create a cluster constant containing the same elements on the block
diagram, you can either drag that cluster from the front panel window to the
block diagram or right-click the cluster on the front panel window and select
Create»Constant from the shortcut menu.

Cluster Order

Cluster elements have a logical order unrelated to their position in the shell.
The first object you place in the cluster is element 0, the second is element
1, and so on. If you delete an element, the order adjusts automatically. The
cluster order determines the order in which the elements appear as terminals
on the Bundle and Unbundle functions on the block diagram. You can view
and modify the cluster order by right-clicking the cluster border and
selecting Reorder Controls In Cluster from the shortcut menu.

© National Instruments Corporation 5-15 LabVIEW Introduction Course Manual

Lesson5 Relating Data

The toolbar and cluster change, as shown in Figure 5-16.

?

Il 2
I cluster.ivi

File Edi wpeate Tool: Browse “Window Help

@ =I DKl){l Click tosetta [|
=
Cluzter /@

Digital c-:-ng OF Butter]] %y

0.0 0K BT

String Control

| E: =

4 ﬁ | »Ij
1 Confirm Button 3 Cluster Order Cursor 5 New Order
2 Cancel Button 4 Current Order

Figure 5-16. Reordering a Cluster

The white box on each element shows its current place in the cluster order.
The black box shows the new place in the order for an element. To set the
order of a cluster element, enter the new order number in the Click to set to
text box and click the element. The cluster order of the element changes, and
the cluster order of other elements adjusts. Save the changes by clicking the
Confirm button on the toolbar. Revert to the original order by clicking

the Cancel button.

To wire clusters to each other, both clusters must have the same number of
elements. Corresponding elements, determined by the cluster order, must
have compatible data types. For example, if a double-precision,
floating-point numeric value in one cluster corresponds in cluster order to a
string in the another cluster, the wire on the block diagram appears broken
and the VI does not run. If the numeric values are different representations,
LabVIEW coerces them to the same representation.

Using Cluster Functions

Use the Cluster functions to create and manipulate clusters. For example,
you can perform tasks similar to the following:

e Extract individual data elements from a cluster.
¢ Add individual data elements to a cluster.

e Break a cluster out into its individual data elements.

LabVIEW Introduction Course Manual 5-16 ni.com

Lesson5 Relating Data

Use the Bundle function to assemble a cluster, use the Bundle function and
Bundle by Name function to modify a cluster, and use the Unbundle
function and the Unbundle by Name function to disassemble clusters.

You also can place the Bundle, Bundle by Name, Unbundle, and Unbundle
by Name functions on the block diagram by right-clicking a cluster terminal
on the block diagram and selecting Cluster & Variant Palette from the
shortcut menu. The Bundle and Unbundle functions automatically contain
the correct number of terminals. The Bundle by Name and Unbundle by
Name functions appear with the first element in the cluster. Use the
Positioning tool to resize the Bundle by Name and Unbundle by Name
functions to show the other elements of the cluster.

Assembling Clusters

Use the Bundle function to assemble a cluster from individual elements or
to change the values of individual elements in an existing cluster without
having to specify new values for all elements. Use the Positioning tool to
resize the function or right-click an element input and select Add Input
from the shortcut menu.

Mews Command

ibe W oukpuk clusker

(13 fp=s B G |

Mew Funckion

Bundle

Figure 5-17. Assembling a Cluster on the Block Diagram

Modifying a Cluster

If you wire the cluster input, you can wire only the elements you want to
change. For example, the Input Cluster shown in Figure 5-18 contains three
controls.

Input Clusker

==

Mew Command

I@ ¥ Qukput Cluster
5|

Bundle

Figure 5-18. Bundle Used to Modify a Cluster

If you know the cluster order, you can use the Bundle function to change
the Command value by wiring the elements shown in Figure 5-19.

© National Instruments Corporation 5-17 LabVIEW Introduction Course Manual

Lesson5 Relating Data

You can also use the Bundle by Name function to replace or access labeled
elements of an existing cluster. The Bundle by Name function works like the
Bundle function, but instead of referencing cluster elements by their cluster
order, it references them by their owned labels. You can access only
elements with owned labels. The number of inputs does not need to match
the number of elements in output cluster.

Use the Operating tool to click an input terminal and select an element from
the pull-down menu. You also can right-click the input and select the
element from the Select Item shortcut menu.

In Figure 5-19, you can use the Bundle by Name function to change New
Command and New Function.

Input Cluster
IIE K
Iews Command
Qukput Cluster
I@ k Caormmand :I
=

Mewt Function

q Bundle Bv Mame

Figure 5-19. Bundle By Name Used to Modify a Cluster

Use the Bundle by Name function for data structures that might change
during development. If you add a new element to the cluster or modify its
order, you do not need to rewire the Bundle by Name function because the
names are still valid.

Disassembling Clusters
Use the Unbundle function to split a cluster into its individual elements.

Use the Unbundle by Name function to return the cluster elements whose
names you specify. The number of output terminals does not depend on the
number of elements in the input cluster.

Use the Operating tool to click an output terminal and select an element
from the pull-down menu. You also can right-click the output terminal
and select the element from the Select Item shortcut menu.

For example, if you use the Unbundle function with the following cluster, it
has four output terminals that correspond to the four controls in the cluster.
You must know the cluster order so you can associate the correct Boolean
terminal of the unbundled cluster with the corresponding switch in the
cluster. In this example, the elements are ordered from top to bottom starting
with element 0. If you use the Unbundle by Name function, you can have an
arbitrary number of output terminals and access individual elements by
name in any order.

LabVIEW Introduction Course Manual 5-18 ni.com

Lesson5 Relating Data

Unbund!
Applicant Cluster n un &

[RE.]
=i iy Marne
Mare 2
Unbundle By Name
Mame Company Mame 2
Campany Mame [~~{¥ak<]|

Error Clusters

© National Instruments Corporation 5-19

Figure 5-20. Unbundle and Unbundle By Name

LabVIEW contains a custom cluster called the error cluster. LabVIEW uses
error clusters to pass error information. An error cluster contains the
following elements:

* status—Boolean value that reports TRUE if an error occurred.
* code—32-bit signed integer that identifies the error numerically.
* source—String that identifies where the error occurred.

Refer to Lesson 3, Troubleshooting and Debugging Vls, for more
information about using error clusters.

LabVIEW Introduction Course Manual

Lesson5 Relating Data

Exercise 5-2 Concept: Clusters
Goal

Create clusters on the front panel window, reorder clusters, and use the
cluster functions to assemble and disassemble clusters.

Description

In this exercise, follow the instructions to experiment with clusters, cluster
order, and cluster functions. The VI you create has no practical applications,
but is useful for understanding cluster concepts.

1. Open a blank VI.

2. Save the VI as Cluster Experiment.vi inthe C:\Exercises\
LabVIEW Basics I\Clusters directory.

In the following steps, you create a front panel similar to Figure 5-21.

Figure 5-21. Cluster Experiment VI Front Panel

3. Add a stop button to the front panel window.
4. Add a numeric indicator to the front panel window.
5. Add around LED to the front panel window.

6. Rename the LED Boolean 2.

LabVIEW Introduction Course Manual 5-20 ni.com

7.

10.

© National Instruments Corporation

Lesson5 Relating Data
Create a cluster named Cluster, containing a numeric, two toggle
switches, and a slide.
Add a cluster shell to the front panel.
Add a numeric control to the cluster.
Add two vertical toggle switches to the cluster.

Rename the Boolean to Boolean 1.

o U U U 0

Add a horizontal fill slide to the cluster.

Create Modified Cluster, containing the same contents as Cluster, but
indicators instead of controls.

O Create a copy of Cluster.
O Relabel the copy Modified Cluster.

O Right-click the shell of Modified Cluster, and select Change to
Indicator from the shortcut menu.

Create Small Cluster, containing a Boolean indicator and a numeric
indicator.

O Create a copy of Modified Cluster.

Relabel the copy Small Cluster.

Delete the second toggle switch.

Delete the horizontal fill slide indicator.

Right-click Small Cluster and select Autosizing»Size to Fit.

Relabel the numeric indicator to S1ide value.

I I N N

Resize the cluster as needed.

Verify the cluster order of Cluster, Modified Cluster, and Small
Cluster.

O Right-click the boundary of Cluster and select Reorder Controls
in Cluster from the shortcut menu.

U Confirm the cluster order shown in Figure 5-22.

5-21 LabVIEW Introduction Course Manual

Lesson5 Relating Data
O Right-click the boundary of Modified Cluster and select Reorder
Controls in Cluster from the shortcut menu.

Q Confirm the cluster orders shown in Figure 5-22. Modified Cluster
should have the same cluster order as Cluster.

O Right-click the boundary of Small Cluster and select Reorder
Controls in Cluster from the shortcut menu.

O Confirm the cluster orders shown in Figure 5-22.

Murmeric
i,
‘-jo .00 E‘J

Eoolean 1

Flide: value

0.00 pT]

Figure 5-22. Cluster Orders

In the following steps, build the block diagram shown in Figure 5-23.

Unbundl
Clusker n_uz i Eundle small Cluster

Unbundle By Mame Increment
Murnetic [Murnetic
Boolean 1 Boolean 1
: . Bundlz By Mame

Modified Cluster
5

-

Figure 5-23. Cluster Experiment VI Block Diagram

_I 11. Add the While Loop from the Structures category of the Functions
S palette to the block diagram.

LabVIEW Introduction Course Manual 5-22 ni.com

Lesson5 Relating Data

12. Disassemble Cluster.

B
13.
=
14.
FE

namep
[Eem] |

© National Instruments Corporation

Q

Q

Add the Unbundle function to the block diagram.

Wire Cluster to the input cluster of the Unbundle function to resize
the function automatically.

Assemble Small Cluster.

Q

Q

Add the Bundle function to the block diagram.

Wire the Bundle function as shown in Figure 5-23.

Assemble Modified Cluster.

Q

Q

Add the Unbundle by Name function to the block diagram.
Wire the Cluster to the Unbundle by Name function.

Resize the Unbundle by Name function to have two output
terminals.

Select Numeric in the first node, and Boolean 1 in the second node.
If a label name is not correct, use the Operating tool to select the
correct item.

Add the Increment function to the block diagram.

O Wire the Numeric output of the Unbundle By Name function to the

U

U 0O 0 0

input of the Increment function. This function adds one to the value
of Numeric.

Add the Not function to the block diagram.

Wire the Boolean 1 output of the Unbundle By Name function to the
x input of the Not function. This function returns the logical opposite
of the value of Boolean.

Add the Bundle by Name function to the block diagram.
Wire Cluster to the input cluster input.
Resize this function to have two input terminals.

Select Numeric in the first node and Boolean 1 in the second node.
If a label name is not correct, use the Operating tool to select the
correct item.

Wire the output of the Increment function to Numeric.

5-23 LabVIEW Introduction Course Manual

Lesson5 Relating Data

O Wire the output of the Not function to Boolean 1.

O Wire the output of the Bundle By Name function to the Modified
Cluster indicator.

15. Complete the block diagram and wire the objects as shown in
Figure 5-23.

16. Save the VL.
17. Display the front panel.
18. Run the VI

19. Enter different values in Cluster and run the VI again. Notice how
values entered in Cluster affect the Modified Cluster and Small
Cluster indicators. Is this the behavior you expected?

20. Try changing the cluster order of Modified Cluster. Run the VI.
How did the changed order affect the behavior?

21. Close the VI. Do not save changes.

End of Exercise 5-2

LabVIEW Introduction Course Manual 5-24 ni.com

Lesson5 Relating Data

C. Type Definitions

You can use type definitions to define custom arrays and clusters.

Custom Controls

Use custom controls and indicators to extend the available set of front panel
objects. You can create custom user interface components for an application
that vary cosmetically from built-in LabVIEW controls and indicators. You
can save a custom control or indicator you created in a directory or LLB and
use the custom control or indicator on other front panel windows. You also
can create an icon for the custom control or indicator and add it to the
Controls palette.

Refer to the LabVIEW Help topic Creating Custom Controls, Indicators,
and Type Definitions for more information about creating and using custom
controls and type definitions.

Use the Control Editor window to customize controls and indicators. For
example, you can change the size, color, and relative position of the
elements of a control or indicator and import images into the control or
indicator.

You can display the Control Editor window in the following ways:

* Right-click a control or indicator on the front panel and select
Advanced»Customize from the shortcut menu.

» Use the Positioning tool to select a control or indicator on the front panel
and select Edit»Customize Control.

* Use the New dialog box.

The Control Editor appears with the selected front panel object in its
window. The Control Editor has two modes, edit mode and customize mode.

The Control Editor window toolbar indicates whether you are in edit mode

or in customize mode. The Control Editor window opens in edit mode.

Click the Edit Mode button to change to customize mode. Click the
Customize Mode button to return to edit mode. You also can switch
between modes by selecting Operate»Change to Customize Mode or
Operate»Change to Edit Mode.

© National Instruments Corporation 5-25 LabVIEW Introduction Course Manual

Lesson 5

Relating Data

Use edit mode to change the size or color of a control or indicator and to
select options from its shortcut menu, just as you do in edit mode on a front
panel window.

Use customize mode to make extensive changes to controls or indicators by
changing the individual parts of a control or indicator.

Edit Mode

In the edit mode, you can right-click the control and manipulate its settings
as you would in the LabVIEW programming environment.

| Control - ” 13pt Application Font - ” H;vl e v”f"‘lv

IR EEEY

Edit Mode 3 Text 5 Distribute Objects
2 Type Definition Status 4 Align Objects 6 Reorder Objects

Customize Mode

In the customize mode, you can move the individual components of the
control around with respect to each other. For a listing of what you can
manipulate in customize mode, select Window»Show Parts Window.

| Cantral - ” 13pt &pplication Font - ” ;mvl .T]:v"l';'lvl
1 Customize Mode 3 Text 5 Distribute Objects
2 Type Definition Status 4 Align Objects 6 Reorder Objects

One way to customize a control is to change its type definition status. You
can save a control as a control, a type definition, or a strict type definition,
depending on the selection visible in the Type Def. Status ring. The control
option is the same as a control you would select from the Controls palette.
You can modify it in any way you need to, and each copy you make and
change retains its individual properties.

Saving Controls

After creating a custom control, you can save it for use later. By default,
controls saved on disk have a . ct1 extension.

You also can use the Control Editor to save controls with your own default
settings. For example, you can use the Control Editor to modify the defaults
of a waveform graph, save it, and later recall it in other VIs.

LabVIEW Introduction Course Manual 5-26 ni.com

Lesson5 Relating Data

Type Definitions

Use type definitions and strict type definitions to link all the instances of a
custom control or indicator to a saved custom control or indicator file. You
can make changes to all instances of the custom control or indicator by
editing only the saved custom control or indicator file, which is useful if you
use the same custom control or indicator in several VIs.

When you place a custom control or indicator in a VI, no connection exists
between the custom control or indicator you saved and the instance of the
custom control or indicator in the VI. Each instance of a custom control or
indicator is a separate, independent copy. Therefore, changes you make to a
custom control or indicator file do not affect VIs already using that custom
control or indicator. If you want to link instances of a custom control or
indicator to the custom control or indicator file, save the custom control or
indicator as a type definition or strict type definition. All instances of a type
definition or a strict type definition link to the original file from which you
created them.

When you save a custom control or indicator as a type definition or strict
type definition, any data type changes you make to the type definition or
strict type definition affect all instances of the type definition or strict type
definition in all the VIs that use it. Also, cosmetic changes you make to a
strict type definition affect all instances of the strict type definition on the
front panel window.

Type definitions identify the correct data type for each instance of a custom
control or indicator. When the data type of a type definition changes, all
instances of the type definition automatically update. In other words, the
data type of the instances of the type definition change in each VI where the
type definition is used. However, because type definitions identify only the
data type, only the values that are part of the data type update. For example,
on numeric controls, the data range is not part of the data type. Therefore,
type definitions for numeric controls do not define the data range for the
instances of the type definitions. Also, because the item names in ring
controls do not define the data type, changes to ring control item names in a
type definition do not change the item names in instances of the type
definition. However, if you change the item names in the type definition for
an enumerated type control, the instances update because the item names are
part of the data type. An instance of a type definition can have its own
unique label, description, default value, size, color, or style of control or
indicator, such as a knob instead of a slide.

If you change the data type in a type definition, LabVIEW converts the old
default value in instances of the type definition to the new data type, if
possible. LabVIEW cannot preserve the instance default value if the data
type changes to an incompatible type, such as replacing a numeric control

© National Instruments Corporation 5-27 LabVIEW Introduction Course Manual

Lesson 5

Relating Data

or indicator with a string control or indicator. When the data type of a type
definition changes to a data type incompatible with the previous type
definition, LabVIEW sets the default value of instances to the default value
for the new data type. For example, if you change a type definition from a
numeric to a string type, LabVIEW replaces any default values associated
with the old numeric data type with empty strings.

Strict Type Definitions

A strict type definition forces everything about an instance to be identical to
the strict type definition, except the label, description, and default value. As
with type definitions, the data type of a strict type definition remains the
same everywhere you use the strict type definition. Strict type definitions
also define other values, such as range checking on numeric controls and the
item names in ring controls. The only VI Server properties available for
strict type definitions are those that affect the appearance of the control or
indicator, such as Visible, Disabled, Key Focus, Blinking, Position, and
Bounds.

You cannot prevent an instance of a strict type definition from automatically
updating unless you remove the link between the instance and the strict type
definition.

Type definitions and strict type definitions create a custom control using a
cluster of many controls. If you need to add a new control and pass a new
value to every subVI, you can add the new control to the custom control
cluster. This substitutes having to add the new control to the front panel of
each subVI and making new wires and terminals.

LabVIEW Introduction Course Manual 5-28 ni.com

Exercise 5-3
Goal

Lesson5 Relating Data

Type Definition

Explore the differences between a type definition and a strict type definition.

Description

1.

Open a blank VL.

2. Create a custom control with a strict type definition status.

3.

4.

© National Instruments Corporation

Q

Q

Q

Q

Add a numeric control to the front panel window.

Right-click the control and select Advanced»Customize from the
shortcut menu. The Control Editor opens.

Select Strict Type Def from the Type Def. Status pull-down menu.

Right-click the numeric control and select Representation»
Unsigned Long from the shortcut menu.

Select File»Save.

Name the control U32 Numeric.ctl in the C:\Exercises\
LabVIEW Basics I\Type Definition directory.

Close the Control Editor window.

Click Yes when asked if you would like to replace the original
control.

Explore the strictly defined custom numeric.

Right-click the numeric control and select Properties from the
shortcut menu. Notice that the only options available are
Appearance, Documentation, and Key Navigation. All other
properties are defined by the strict type definition.

Click Cancel to exit the Properties dialog box.

Right-click the numeric control again. Notice that representation is
not available on the shortcut menu. Also notice that you can open the
type definition or disconnect from the type definition.

Change the type definition status to type definition.

Right-click the numeric control and select Open Type Def from the
shortcut menu.

5-29 LabVIEW Introduction Course Manual

Lesson5 Relating Data

5.

6.

Q

Q

Q

Select Type Def from the Type Def. Status pull-down menu.
Save the control.

Close the Control Editor window.

Explore the type defined custom numeric.

Q

Right-click the numeric control and select Properties from the
shortcut menu. Notice that more items are available, such as the data
range, and format and precision.

Click Cancel to exit the Properties dialog box.

Right-click the numeric control again. Notice that Representation
is dimmed on the shortcut menu because the type definition defines
the data type. Also notice that you can choose whether to
auto-update with the type definition.

Add another instance of the custom control to the front panel window
and disconnect it from the type definition.

Q

Q

Select Select a Control from the Controls palette.

Select the U32 Numeric.ctl from the C: \Exercises\
LabVIEW Basics I\Type Definition directory.

Right-click the new numeric and select Disconnect from Type Def
from the shortcut menu.

Right-click the numeric again and notice that you can now change
the Representation because the numeric is no longer linked to the
type definition.

7. Close the VI when you are finished. You do not need to save the VI.

End of Exercise 5-3

LabVIEW Introduction Course Manual

5-30 ni.com

Lesson5 Relating Data

Self-Review: Quiz

1.

2.

You can create an array of arrays.
a. True
b. False

You have two input arrays wired to a For Loop. Auto-indexing is
enabled on both tunnels. One array has 10 elements, the second array
has 5 elements. A value of 7 is wired to the Count terminal, as shown in
Figure 5-24. What is the value of the Iterations indicator after running
this VI?

FHN

10 element array
¥]

Iterations

5 element array
¥ |

© National Instruments Corporation

Figure 5-24. What is the Value of the lteration Indicator?

You customize a control, select Control from the Type Def. Status
pull-down menu, and save the control as a .ct1 file. You then use an
instance of the custom control on your front panel window. If you open
the . ct1 file and modify the control, does the control on the front panel
window change?

a. Yes
b. No

You are inputting data that represents a circle. The circle data includes
an x position, a y position, and a radius. All three pieces of data are
double-precision. In the future, you might need to store the color of the
circle, represented as an integer. How should you represent the circle on
your front panel window?

a. Three separate controls for the two positions and the radius.
b. A cluster containing all of the data.

c. A custom control containing a cluster.

d. A type definition containing a cluster.

e. An array with three elements.

5-31 LabVIEW Introduction Course Manual

Lesson5 Relating Data

Self-Review: Quiz Answers

1. You can create an array of arrays.
a. True

b. False

2. You have two input arrays wired to a For Loop. Auto-indexing is
enabled on both tunnels. One array has 10 elements, the second array
has 5 elements. A value of 7 is wired to the Count terminal, as shown in
the following figure. What is the value of the Iterations indicator after
running this VI?

FHN

10 element array
¥ |

Iterations

S element array
¥ |

Figure 5-25. What is the value of the Iteration indicator?

Value of Iterations = 4

LabVIEW does not exceed the array size. This helps to protect against
programming error. LabVIEW mathematical functions work the same

way—if you wire a 10 element array to the x input of the Add function,
and a 5 element array to the y input of the Add function, the output is a
5 element array.

Although the for loop runs 5 times, the iterations are zero based,
therefore the value of the Iterations indicators is 4.

3. You customize a control, select Control from the Type Def. Status
pull-down menu, and save the control as a .ct1 file. You then use an
instance of the custom control on your front panel window. If you open
the . ct1 file and modify the control, does the control on the front panel
window change?

a. Yes
b. No

© National Instruments Corporation 5-33 LabVIEW Introduction Course Manual

Lesson5 Relating Data

4. You are inputting data that represents a circle. The circle data includes
an x position, a y position, and a radius. All three pieces of data are
double precision. In the future, you might need to store the color of the
circle, represented as an integer. How should you represent the circle on
your front panel window?

LabVIEW Introduction Course Manual

a.
b.

C.

Three separate controls for the two positions and the radius.
A cluster containing all of the data.

A custom control containing a cluster.

A type definition containing a cluster.

An array with three elements.

5-34 ni.com

Lesson5 Relating Data

Notes

© National Instruments Corporation 5-35 LabVIEW Introduction Course Manual

Lesson5 Relating Data

Notes

LabVIEW Introduction Course Manual 5-36 ni.com

Storing Measurement Data

You have learned how to acquire data and how to display it, but storage of
your data is usually a very important part of any project. In this lesson, you
learn about storing data.

Topics

A. Understanding File I/O
B. Understanding High-Level File I/O
C. Low-Level File I/O

© National Instruments Corporation 6-1 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

A. Understanding File 1/0

File 1/O records or reads data in a file.

A typical file I/O operation involves the following process.

1.

Create or open a file. Indicate where an existing file resides or where you
want to create a new file by specifying a path or responding to a dialog
box to direct LabVIEW to the file location. After the file opens, a refnum
represents the file.

2. Read from or write to the file.
3. Close the file.

O

> ®

\ 4
®

Open File 3 Close File
Read/Write File 4 Check for Errors

File Formats

Figure 6-1. Steps in a Typical File I/0 Operation

LabVIEW can use or create the following file formats: Binary, ASCII,
LVM, and TDM.

Binary—Binary files are the underlying file format of all other file
formats.

ASCII—An ASCII file is a specific type of binary file that is a standard
used by most programs. It consists of a series of ASCII codes. ASCII
files are also called text files.

LVM—The LabVIEW measurement data file (. 1vm) is a tab-delimited
text file you can open with a spreadsheet application or a text-editing
application. The . 1vm file includes information about the data, such as

the date and time the data was generated. This file format is a specific
type of ASCII file created for LabVIEW.

TDM—This file format is a specific type of binary file created for
National Instruments products. It actually consists of two separate files:
an XML section contains the data attributes, and a binary file for the
waveform.

In this course, you learn about creating text (ASCII) files. Use text files
when you want to access the file from another application, if disk space and

LabVIEW Introduction Course Manual

6-2 ni.com

Lesson 6 Storing Measurement Data

file I/O speed are not crucial, if you do not need to perform random access
read or writes, and if numeric precision is not important.

You used an LVM file in Lesson 2, Navigating LabVIEW. To learn more
about binary and TDM files, refer to the LabVIEW Help or the LabVIEW
Basics 11 course.

LabVIEW Data Directory

You can use the default LabVIEW Data directory to store the data files
LabVIEW generates, such as . 1vm or . txt files. LabVIEW installs the
LabVIEW Data directory in the default file directory for your operating
system to help you organize and locate the data files LabVIEW generates.
By default, the Write LabVIEW Measurement File Express VI stores the
. 1lvm files it generates in this directory, and the Read LabVIEW

o Measurement File Express VI reads from this directory. The Default Data
Directory constant and the Default Data Directory property also return the
LabVIEW Data directory by default.

Select Tools»Options and select Paths from the Category list to specify a
different default data directory. The default data directory differs from the
default directory, which is the directory you specify for new Vls, custom
controls, VI templates, or other LabVIEW documents you create.

© National Instruments Corporation 6-3 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

B. Understanding High-Level File 1/0

Some File I/O VIs perform all three steps of a file I/O process: open,
read/write, and close. If a VI performs all three steps, it is referred to as a
high-level VI. However, these VIs may not be as efficient as the low-level

Vs

and functions designed for individual parts of the process. If you are

writing to a file in a loop, use low-level file I/O VIs. If you are writing to a

file

in a single operation, you can use the high-level file I/O VIs instead.

High-level file I/O VIs include the following:

@ Tip Avoid plac

=

Write to Spreadsheet File—Converts a 2D or 1D array of
single-precision numbers to a text string and writes the string to a new
ASCII file or appends the string to an existing file. You also can
transpose the data. The VI opens or creates the file before writing to it
and closes it afterwards. You can use this VI to create a text file readable
by most spreadsheet applications.

Read From Spreadsheet File—Reads a specified number of lines

or rows from a numeric text file beginning at a specified character offset
and converts the data to a 2D single-precision array of numbers. The VI
opens the file before reading from it and closes it afterwards. You can
use this VI to read a spreadsheet file saved in text format.

Write to Measurement File—An Express VI that writes data to a
text-based measurement file (. 1vm) or a binary measurement file

(. tdm) format. You can specify the save method, file format (.lvm or
.tdm), header type, and delimiter.

Read from Measurement File—An Express VI that reads data from a
text-based measurement file (. 1vm) or a binary measurement file

(. tdm) format. You can specify the file name, file format and segment
size.

ing the high-level VIs in loops, because the VIs perform open and close

operations each time they run.

LabVIEW Introduction Course Manual

6-4 ni.com

Exercise 6-1
Goal

Spreadsheet Example VI

Lesson 6 Storing Measurement Data

To save a 2D array in a text file so a spreadsheet application can access the
file and to explore how to display numeric data in a table.

Description

Complete the following steps to examine a VI that saves numeric arrays to
a file in a format you can access with a spreadsheet.

1. Open the Spreadsheet Example VI located in the C: \Exercises\
LabVIEW Basics I\Spreadsheet Example directory. The

following front panel window is already built.

“Waveform Graph

Annplitude

Table
Sine Moize Cozine &
1 0.05 0.93 1.00
2 010 -0.40 1.00
3 015 068 033
4 020 013 0.98
5 0.24 0.69 0.97
5 023 069 0.96
7 034 016 0.94
g 0.38 -0.55 0.92
g 043 0.07 090
10 [0.47 -0.82 0.88
11 |0.51 -0.73 0.86
12 |0.56 -0.46 0.a3
13 (060 -0.08 0.80
O e]
Ef [
2. Run the VL

The VI generates a 2D array of 128 rows x 3 columns. The first column
contains data for a sine waveform, the second column contains data for a
noise waveform, and the third column contains data for a cosine waveform.
The VI plots each column in a graph and displays the data in a table.

3. When the Choose file to write dialog box appears, save the file as
wave.txt in the C:\Exercises\LabVIEW Basics I\
Spreadsheet Example directory and click the OK button. Later, you
will examine this file.

© National Instruments Corporation

6-5

LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

4. Display and examine the block diagram for this VI.

Sine Pakkern,wi

?;f"d Array ‘WaveForm Graph
e =18 .
Uniform White Moise, vi Transpose 2D Array Write To Spreadsheet File,vi
M 2.3
I *i xi I?

Sine Pattern.wvi

phase
Q0.0

Mumber Ta Fractional String
F Table

Ll I'\.M\mss?
precision E‘H """ 5| fibd]

The Sine Pattern VI returns a numeric array of 128 elements containing a
sine pattern. The constant 90 . 0, in the second instance of the Sine Pattern
VI, specifies the phase of the sine pattern or cosine pattern.

The Uniform White Noise VI returns a numeric array of 128 elements
containing a noise pattern.

The Build Array function builds the following 2D array from the sine array,
noise array, and cosine array.

oo
i4d

Sine Array

Noise Array

Cosine Array

The Transpose 2D Array function rearranges the elements of the 2D array
so element [i, 5] becomes element [§,1i], as follows.

S N C

LabVIEW Introduction Course Manual 6-6 ni.com

Lesson 6 Storing Measurement Data

The Write To Spreadsheet File VI formats the 2D array into a spreadsheet

=T
ﬁ string and writes the string to a file. The string has the following format,
where an arrow (—) indicates a tab, and a paragraph symbol ({) indicates an
end of line character.
S C
- - q
- - q
- - q
- - 1
e The Number To Fractional String function converts an array of numeric
S values to an array of strings that the table displays.
5. Close the VI. Do not save changes.
@ Note This example stores only three arrays in the file. To include more arrays, increase

the number of inputs to the Build Array function.

Open the wave . txt file using a word processor or spreadsheet application

and view its contents.

6. Open a word processor or spreadsheet application, such as Notepad or

‘WordPad.

7. Open wave. txt. The sine waveform data appear in the first column,
the random waveform data appear in the second column, and the cosine

waveform data appear in the third column.

8. Exit the word processor or spreadsheet application and return

to LabVIEW.

End of Exercise 6-1

© National Instruments Corporation 6-7

LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

C. Low-Level File /0

Low-level file I/O VIs and functions each perform only one piece of the file
I/O process. For example, there is one function to open an ASCII file, one
function to read an ASCII file, and one function to close an ASCII file. Use
low-level functions when file I/O is occurring within a loop.

Disk Streaming with Low-Level Functions

You also can use File I/O functions for disk streaming operations, which
save memory resources by reducing the number of times the function
interacts with the operating system to open and close the file. Disk
streaming is a technique for keeping files open while you perform multiple
write operations, for example, within a loop. Wiring a path control or a
constant to the Write to Text File function, the Write to Binary File function,
or the Write to Spreadsheet File VI adds the overhead of opening and
closing the file each time the function or VI executes. VIs can be more
efficient if you avoid opening and closing the same files frequently.

To avoid opening and closing the same file, you need to pass a refnum to the
file into the loop. When you open a file, device, or network connection,
LabVIEW creates a refnum associated with that file, device, or network
connection. All operations you perform on open files, devices, or network
connections use the refnums to identify each object.

The examples in Figure 6-3 and Figure 6-2 show the advantages of using
disk streaming. In the first example, the VI must open and close the file
during each iteration of the loop. The second example uses disk streaming
to reduce the number of times the VI must interact with the operating system
to open and close the file. By opening the file once before the loop begins
and closing it after the loop completes, you save two file operations on each
iteration of the loop.

Mumber To Decimal String

#

==

file path fuse dislog] openycreateiReplace File —! ‘Write to Text File Close File
IEI o L

dbOpen of create v

access (Diread/write)

Figure 6-2. Non-Disk Streaming Example

LabVIEW Introduction Course Manual 6-8 ni.com

Lesson6 Storing Measurement Data

Murmber To Decimal String
#

EEE]
b
file path {use dialog) openicreate/Replace File Wirite ko Text File Close File

= ™ r Tal T ¥

4-open o creake |

access (0iread/write)

Figure 6-3. Disk Streaming Example

© National Instruments Corporation 6-9 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

Exercise 6-2

Goal

Description

Temperature Log VI

Modify a VI to create an ASCII file using disk streaming.

You have been given a VI that plots the current temperature and the average
of the last three temperatures. Modify the VI to log the current temperature
to an ASCII file.

1. Open the Temperature Multiplot.vi located in the
C:\Exercises\LabVIEW Basics I\Temperature Multiplot
directory.

2. Save the VI as Temperature Log.vi.

0 Select File»Save As and rename the VI Temperature Log.vi in
the C: \Exercises\LabVIEW Basics I\Temperature Log
directory.

O Create the directory if it does not already exist.
Q Select the Substitute Copy for Original option.

In the steps below, you modify the block diagram similar to that shown in
Figure 6-4.

DEMO I Campound Arithmetic I

[Temp I: Temperature Histary

3,00
DEMD
lTemp
A

Open/

Create/

Replace File Write to Text File Close File
e 5
4replace or create ¥ D ,ﬁc]

Pawier
i

Figure 6-4. Temperature Log VI Block Diagram

3. Resize the While Loop to add room for the file I/O functions.

LabVIEW Introduction Course Manual 6-10 ni.com

4.
jh
5
LT
EHED
ab
6.
e
h
7.
i)
8.

© National Instruments Corporation

Lesson 6 Storing Measurement Data

Create a file or replace an existing file for the data log.

Q

Q

Q

Add the Open/Create/Replace File function to the left of the While
Loop.

Right-click the operation input of the Open/Create/Replace File
function, and select Create»Constant.

Select replace or create in the enumerated constant that appears.

. Write the temperature data to file, adding an end of line constant to each

piece of data.

Q

U U U 0

Add a Number to Fractional String function inside the While Loop.
Add an End of Line Constant inside the While Loop.

Add a Concatenate Strings function inside the While Loop.

Add a Write to Text File function inside the While Loop.

Wire the inputs of the Write to Text File function as shown in
Figure 6-4.

Stop the loop if an error occurs or if the user turns off the Power switch.

Q

Q

Q

Q

Delete the wire connecting the Power Boolean control to the
conditional terminal.

Add an Exclusive Or function next to the conditional terminal.
Add an Unbundle By Name function to the While Loop.

Wire the conditional terminal as shown in Figure 6-4.

Close the file and handle any errors that may have occurred.

Q

Q

Q

Add a Close File function to the right of the While Loop.
Add a Simple Error Handler to the right of the Close File function.

Finishing wiring the block diagram as shown in Figure 6-4.

Save the VI.

6-11 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

9. Test the VI.
U Run the VI.
U Give the text file a name and a location.

Q Turn the Power switch to Off after the VI has been running for a few
samples.

Q Navigate to the text file created and explore it.

10. Close the VI and text file when you have finished.

End of Exercise 6-2

LabVIEW Introduction Course Manual 6-12 ni.com

Lesson 6 Storing Measurement Data

Exercise 6-3 Self-Study: Read VCard VI

Goal
Read an ASCII file into LabVIEW.

Scenario

The business card contacts for your company are stored in the Windows
Address Book. You must extract specific data from an individual business
card into a LabVIEW text display.

Design
Inputs and Outputs

In this VI, the output appears in a dialog box, and the inputs are from a file.
Therefore, there are no inputs or outputs necessary on the front panel
window of this VI.

Flowchart

To understand how to design this program, you must first view the text file
created by the Address Book.

1. Open WordPad from Start»All Programs»Accessories»WordPad.
2. Select File»Open.

3. Navigate to the C: \Exercises\LabVIEW Basics I\Read VCard
directory.

4. Change the file type to All Documents.
5. Select one of the business card files in this directory.

This is an example of the text file created.

Start of VCard text file

BEGIN:VCARDY]

VERSION:2.19
N:McGillicuttey;Heather;Louise;Ms.q
FN:Heather Louise McGillicutteyq

NICKNAME: Louq

ORG:National Instruments;Internal Affairsq
TITLE:Presidentq

NOTE:I am an imaginary person.q

© National Instruments Corporation 6-13 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

TEL; WORK; VOICE:512-555-1212¢9

TEL; HOME; VOICE:512-555-1212¢9

TEL; CELL; VOICE:512-555-12129

TEL; PAGER;VOICE:512-555-1212¢

TEL; WORK; FAX:512-555-12129

TEL; HOME; FAX:512-555-12129

ADR;WORK: ;Corner;11500 N. Mopac Expressway;Austin;Texas;78759;USA]

LABEL; WORK ; ENCODING=QUOTED-PRINTABLE:Corner=0D=0A11500 N. Mopac
Expressway=0D=0AAustin, Texas 78759=0D=0AUSAqQ

ADR;HOME:; ;111 Easy Street;Austin;Texas;78759;USA]

LABEL; HOME ; ENCODING=QUOTED-PRINTABLE: 111 Easy Street=0D=0AAustin, Texas
78759=0D=0AUSA]

EMATL; PREF; INTERNET: heather@ni .comq
REV:20050818T150422Z9
END:VCARD

End of VCard text file

Notice that the file contains beginning and end tags. You can use the end tag
to determine when to stop reading the file. The file also has an end of line
after each tag. There is also a colon between the tag and the corresponding
data. There is a semicolon separating different parts of a each data element.
All of this information is useful when writing a VI meant to parse data.

LabVIEW Introduction Course Manual 6-14 ni.com

Lesson 6

?

l—Nm

Open File

Read one line of
data from file

:

Seperate the data

Create an array of
clusters (tag and

Storing Measurement Data

into two strings at End of File? Yes - Close File —»
display name) for
the colon :

data of interest

Add string to Use tag name to
a tag array and »{ determine index of

a data array. data of interest

No

Get data from
specificed index

I

Replace
semicolons with
carriage returns

!

Add new row to an
array of display
names and data

nd of data o
interest?

Yes

v

Display 2D Array
of data

o

© National Instruments Corporation 6-15

Figure 6-5. Read VCard VI Flowchart

This program consists of two loops. One loop reads the data from the
business card file, line by line. The second loop chooses which pieces of
data to display, replaces each tag name with a more meaningful name, and
replaces the semicolons with end of line characters. The flowchart elements
in Figure 6-5 with a thicker border represent VIs that have already been built
for you for this exercise.

LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

Implementation

1. Create a business card entry in the Windows Address Book.

Q

Q

Q

Q

Open the Address Book from Start»All Programs»A ccessories»
Address Book.

Select File»xNew Contact.

Fill in some or all of the fields with your information or an imaginary
contact.

Click OK when you have finished.
Select File» Export»Business Card (vCard).

Navigate to the C: \Exercises\LabVIEW Basics I\
Read VCard directory.

Click Save.

Select File»Exit to close the Windows Address Book.

2. Open a blank VI.

3. Save the VI as Read vVCard.vi in the C: \Exercises\LabVIEW
Basics I\Read VCard directory.

4. Open the block diagram.

In the following steps, you create a block diagram similar to Figure 6-6. In
this block diagram, you read the vCard you just created as a 2D array of
strings. The first dimension of the array contains the tags; the second
dimension contains the data.

Resd one line

/1 ::I_D"m

L Tstatos]
-? Tags
E.., bb i Fibe]

ut am
[5plit each line inko a kag and data | I Data
m Fibc]

LabVIEW Introduction Course Manual

Figure 6-6. Read VCard VI Block Diagram

6-16 ni.com

5.

© National Instruments Corporation

Lesson 6 Storing Measurement Data

Open the text file.

Q Add an Open/Create/Replace File function to the block diagram.
You do not need to wire any of the inputs of this function to use the
default settings.

Read the data from the text file.

U Add a While Loop from the Structures palette to the block diagram
to the right of the Open/Create/Replace File function.

Q Add a Read From Text File function inside the While Loop.

O Right-click the Read From Text File function and select Read Lines
to read the file by line.

Q Wire the refnum out terminal from the Open/Create/Replace File
function to the file (use dialog) terminal of the Read From Text File
function.

O Wire the error out terminal from the Open/Create/Replace File
function to the error in terminal of the Read From Text File
function.

U Add a Match Pattern function after the Read from Text File function.

Q Wire the text terminal of the Read Text function to the string
terminal of the Match Pattern function.

O Right-click the regular expression terminal of the Match Pattern
function and select Create»Constant from the shortcut menu.

O Enter a colon (:) in the string constant.

U Wire the before substring terminal of the Match Pattern function to
create an output tunnel from the While Loop.

O Right-click the output tunnel and select Enable Indexing from the
shortcut menu.

Q Wire the after substring terminal of the Match Pattern function to
create an output tunnel from the While Loop.

O Right-click the output tunnel and select Enable Indexing from the
shortcut menu.

6-17 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

7. Stop the While Loop if an error occurs or when the end of the file has
been reached.

LabVIEW Introduction Course Manual

Q

Q

Wire the error out terminal of the Read From Text File function to
create an output tunnel on the While Loop.

Right-click the tunnel and select Replace with Shift Register from
the shortcut menu. Your cursor should change into a shift register,
indicating that you should choose the input side of the shift register.

Click the error input tunnel on the right side of the While Loop to
change the input tunnel to a shift register.

Q Add an Unbundle By Name function inside the While Loop.

Wire the error out from the Read from Text File function to the
Unbundle By Name function.

Add an Or function in the While Loop.

Wire the status element of the error cluster to the x input of the
Or function.

Add an Equal? function in the While Loop.

U Wire the before substring terminal of the Match Pattern function to

the y terminal of the Equal? function.

O Right-click the x terminal of the Equal? function.

Select Create»Constant.

Enter END into the String Constant. Use all capitals, as case is
important.

Wire the output of the Equal? function to the y input of the Or function.

Wire the output of the Or function to the conditional terminal of the
While Loop.

Close the text file.

Q

Q

Wire the refnum out terminal of the Read From Text File function
to create an output tunnel on the While Loop.

Right-click the tunnel and select Replace with Shift Register. Your
cursor should change into a shift register, indicating that you should
choose the input side of the shift register.

6-18 ni.com

Lesson 6 Storing Measurement Data
Q Click the left refnum input tunnel of the While Loop to replace the
tunnel with a shift register.
U Add a Close File function to the right of the While Loop.

Q Wire the refnum output tunnel to the refnum input terminal of the
Close File function.

Wire the error output tunnel to the error in terminal of the Close File
function.

9. Display the arrays generated on the output of the While Loop.

U Right-click the before the substring indexed output tunnel and select
Create»Indicator from the shortcut menu.

O Name the array indicators Tags.

U Right-click the bottom array output tunnel and select Create»
Indicator from the shortcut menu.

O Name the array indicators Data.
10. Check for errors.
O Add a Simple Error Handler to the right of the Close File function.

U Wire the error out terminal from the Close File function to the
error in terminal of the Simple Error Handler.

11. Save the VL.
12. Open the front panel window.
13. Expand the indicators to show multiple elements of the arrays.

14. Run the VL.

© National Instruments Corporation 6-19 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

Figure 6-7 shows an example of the front panel after running this VI. Notice
that it is very similar to opening the text file. The names used for each
category are not very clear. In the rest of this exercise, you modify the VI so
that it parses the data for you, making it more legible to a user.

Tags

McGillicuttey;Heather ;L

Heather Louise
NICKNAME La

Mational

President

I am an imaginary
TEL;'"WORK; WOICE S12-555-121z2

TEL;HOME;YOICE 512-555-1212

TEL; CELL;WOICE 512-555-1212

TEL; PAGER;YOICE 517-555-1712

TEL;WORK;FAX 512-555-1212

TEL;HOME;FAx 512-555-1212

jCorner; 11500 M,

Figure 6-7. Read VCard VI Front Panel without Data Parsing

In the following steps, you add to the block diagram to parse the data in the
arrays. To simplify this process, two VIs have already been built for you.
One of these VIs creates an array where each array element is a cluster
containing a tag and a replacement name for the tag. The second VI opens a
dialog box that displays the final data in a table.

15. Switch to the block diagram.
16. Delete the tag and data array indicators.

17. Delete the wire connecting the Close File function to the Simple Error
Handler.

LabVIEW Introduction Course Manual 6-20 ni.com

Lesson 6 Storing Measurement Data

Disélai

¥
i
=
(=
&
n
]
-
=
i
[T
1
=
F[m
Sl
|2
—=|n
e
[
=IRAD B m
k= ﬂ
"2 |5 z =
&5 S =S =S
m Cow & m
(=] %] o
o mE iy m
p O i]
nE =
m
=
m
=]
=]
c
a
=
]
=
m
=]
=
E
o
£ £
o
c o
=] m
o il
o =
o |5

Figure 6-8. Read VCard VI Block Diagram

© National Instruments Corporation 6-21 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

18. Move the Simple Error Handler out of the way. You use this VI later in
this exercise.

19. Access the array of tags and replacement names.

Q

Place the Vcard Tags.vi to the right of the Close File function.
This VI is located in the C: \Exercises\LabVIEW Basics I\
Read VCard directory.

@ Tip Use the Select a VI category of the Functions palette to locate a VI that is not part
of the Functions palette. After you have placed the VI on the block diagram, you can
double-click the VI to open it and examine its block diagram.

Q

Wire the error out terminal from the Close File function to the
error in terminal of the Vcard Tags VI.

20. Create a 2D array containing the replacement names and the
corresponding data.

LabVIEW Introduction Course Manual

Q
Q

U U U o

U

Add a For Loop to the right of the Vcard Tags VI.

Wire the Array terminal from the Vcard Tags VI to create an input
tunnel on the For Loop. Notice that indexing has automatically been
enabled.

Add an Unbundle by Name function inside the For Loop.
Wire the indexed input tunnel to the Unbundle by Name function.
Expand the Unbundle by Name function to show two elements.

Add a Search 1D Array function to the right of the Unbundle by
Name function.

Wire the Field Tag element of the Unbundle by Name function to
the element terminal of the Search 1D Array function.

Wire the tag array to the 1D array terminal of the Search 1D Array
function. The tag array is the top indexed output tunnel of the While
Loop.

Disable indexing on the For Loop tag array input tunnel.

Add an Index Array function to the right of the Search 1D Array
function.

Wire the data array to the array terminal of the Index Array
function. The data array is the bottom indexed output tunnel of the
While Loop.

6-22 ni.com

Lesson 6 Storing Measurement Data

O Disable indexing on the For Loop data array input tunnel.

O Wire the index of element terminal from the Search 1D Array
function to the index terminal of the Index Array function.

 Add a Search and Replace String function to the right of the Index
Array function.

O Wire the element terminal of the Index Array to the input string
terminal of the Search and Replace String.

O Right-click the search string terminal of the Search and Replace
String function and select Create»Constant.

U Enter a semicolon (;) in the string constant.

O Place an End of Line constant below the string constant.

O Wire the End of Line Constant to the replace string terminal of the
Search and Replace String function.

O Right-click the replace all?(F) terminal of the Search and Replace
String function and select Create»Constant from the shortcut
menu.

O Use the Operating tool to change the False Boolean to a True
Boolean.

Q Add a Trim Whitespace VI to the right of the Search and Replace
String function.

Q Wire the result string terminal for the Search and Replace String
function to the input of the Trim Whitespace VI.

Q Add a Build Array function to the right of the Trim Whitespace V1.
Q Resize the Build Array function to have two nodes.

O Wire the Field Name element of the Unbundle by Name function to
the top node of the Build Array function.

O Wire the trimmed string output of the Trim Whitespace VI to the
bottom node of the Build Array function. You now have a two
dimensional array with meaningful descriptions in the first
dimension and corresponding data in the second dimension.

21. Display the generated array.

Q Wire the output of the Build Array function to create an output
tunnel on the For Loop.

© National Instruments Corporation 6-23 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

Q

Confirm that the output tunnel is auto-indexed.

Place the Table Dialog VI, located in the C: \Exercises\
LabVIEW Basics I\Read VCard directory, to the right of the
For Loop.

Wire the indexed output tunnel to the Contact Information terminal
of the Table Dialog VI.

Wire the error cluster from the Vcard Tags VI to the Table Dialog VI.
Replace the error cluster tunnels with shift registers.

Move the Simple Error Handler VI to the right of the Table
Dialog VI.

Wire the error out terminal of the Table Dialog VI to the error in
terminal of the Simple Error Handler VI.

22. Switch to the front panel window.

23. Save the VI.

Test

1. Run the VL

2. When prompted, navigate to the business card file you created earlier in
this exercise.

3. Close the Table Dialog window to stop the VI.

4. Close the VI when you have finished.

End of Exercise 6-3

LabVIEW Introduction Course Manual

6-24 ni.com

Lesson 6 Storing Measurement Data

Self-Review: Quiz

1. Your continuously running test program logs to a single file the results
of all tests that occur in one hour as they are calculated. If you are
concerned about the execution speed of your program, should you use
low-level or high-level File I/O VIs?

a. Low-level file I/O VIs
b. High-level file I/O VIs

2. If you want to view data in a text editor such as Notepad, what file
format should you use to save the data?

a. ASCII
b. TDM

© National Instruments Corporation 6-25 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

Self-Review: Quiz Answers

1. Your continuously running test program logs to a single file the results
of all tests that occur in one hour as they are calculated. If you are
concerned about the execution speed of your program, should you use
low-level or high-level File I/O VIs?

a. Low-level file I/O VIs
b. High-level file I/O VIs

2. If you want to view data in a text editor such as Notepad, what file
format should you use to save the data?

a. ASCII
b. TDM

© National Instruments Corporation 6-27 LabVIEW Introduction Course Manual

Lesson 6 Storing Measurement Data

Notes

LabVIEW Introduction Course Manual 6-28 ni.com

Developing Modular Applications

This lesson describes how to develop modular applications. The power of
LabVIEW lies in the hierarchical nature of the VI. After you create a VI,
you can use it on the block diagram of another VI. There is no limit on the
number of layers in the hierarchy. Using modular programming helps you
manage changes and debug the block diagram quickly.

Topics

A. Understanding Modularity
B. Building the Icon and Connector Pane
C. Using SubVlIs

© National Instruments Corporation 7-1 LabVIEW Introduction Course Manual

Lesson 7 Developing Modular Applications

A. Understanding Modularity

Modularity defines the degree to which a program is composed of discrete
modules such that a change to one module has minimal impact on other
modules. Modules in LabVIEW are called subVls.

A VI within another VI is called a subVI. A subVI corresponds to a
subroutine in text-based programming languages. When you double-click a
subVl1, a front panel and block diagram appear, rather than a dialog box in
which you can configure options. The front panel includes controls and
indicators. The block diagram includes wires, front panel icons, functions,
possibly subVls, and other LabVIEW objects that also might look familiar.

The upper right corner of the front panel window and block diagram
window displays the icon for the VI. This icon is the same as the icon that
appears when you place the VI on the block diagram.

As you create VIs, you might find that you perform a certain operation
frequently. Consider using subVIs or loops to perform that operation
repetitively. For example, the following block diagram contains two
identical operations.

.-" =

DAG Assistant

1.8

Seleck I Compound
I% Arithmetic

1+

- Oukpuk

Tulkiply Add J

|> Select
I E
Mulkiply add

DAQ Assistant? |> D

32

1.5 32
Mode

|

Figure 7-1. Block Diagram with Two Identical Operations

LabVIEW Introduction Course Manual 7-2 ni.com

Lesson 7 Developing Modular Applications

Compound
ithmetic Cutput

FDEL

........ - [Temp

Figure 7-2. Block Diagram with SubVIs for Identical Operations

The example calls the Temperature VI as a subVI twice on its block diagram
and functions the same as the previous block diagram.You also can reuse the

subVI in other VlIs.

The following pseudo-code and block diagrams demonstrate the analogy

between subVIs and subroutines.

Function Code

Calling Program Code

function average (inl,
in2, out)

{
out = (inl + in2)/2.0;

}

main

average (pointl, point2,
pointavg)

SubVI Block Diagram

Calling VI Block Diagram

inl
ok

in2

inl

ouk
@ Pjnt FOEL |

Aug
in2
I@]

© National Instruments Corporation 7-3

LabVIEW Introduction Course Manual

Lesson 7 Developing Modular Applications

B. Building the Icon and Connector Pane

After you build a VI front panel and block diagram, build the icon and the
connector pane so you can use the VI as a subVI. The icon and connector
pane correspond to the function prototype in text-based programming
languages. Every VI displays an icon, such as the one shown as follows, in
the upper right corner of the front panel and block diagram windows.

]

1

An icon is a graphical representation of a VI. It can contain text, images, or
a combination of both. If you use a VI as a subV], the icon identifies the
subVI on the block diagram of the VI. You can double-click the icon to
customize or edit it.

@ Note Customizing the icon is recommended, but optional. Using the default LabVIEW
icon does not affect functionality.

Creating an Icon

You also need to build a connector pane, shown as follows, to use the VI as
a subVL

The connector pane is a set of terminals that correspond to the controls and
indicators of that VI, similar to the parameter list of a function call in
text-based programming languages. The connector pane defines the inputs
and outputs you can wire to the VI so you can use it as a subVI. A connector
pane receives data at its input terminals and passes the data to the block
diagram code through the front panel controls and receives the results at its
output terminals from the front panel indicators.

The default icon contains a number that indicates how many new VIs you
have opened since launching LabVIEW. Create custom icons to replace the
default icon by right-clicking the icon in the upper right corner of the front
panel or block diagram window and selecting Edit Icon from the shortcut
menu or by double-clicking the icon in the upper right corner of the front
panel window.

You also can drag a graphic from anywhere in your file system and drop it
in the upper right corner of the front panel window or block diagram
window. LabVIEW converts the graphic to a 32 x 32 pixel icon.

LabVIEW Introduction Course Manual 7-4 ni.com

Lesson 7 Developing Modular Applications

Refer to the Icon Art Glossary at ni . com for standard graphics to use in a
VIicon.

Refer to the National Instruments Web site at ni . com/info and enter the
info code expnr7 for standard graphics to use in a VI icon.

Depending on the type of monitor you use, you can design a separate icon
for monochrome, 16-color, and 256-color mode. LabVIEW uses the
monochrome icon for printing unless you have a color printer.

Use the tools on the left side of the Icon Editor dialog box to create the icon
design in the editing area. The normal size image of the icon appears in the
appropriate box to the right of the editing area, as shown in Figure 7-3.

13 Icon Editor

File Edit Help

Copy From:

Elack & White
.
. 16 Colors 256 Colors
arning| =
T [] show Terminals
Lok |

o
T

256 Colors

COLD

Figure 7-3. Icon Editor Window

Use the Edit menu to cut, copy, and paste images from and to the icon.
When you select a portion of the icon and paste an image, LabVIEW resizes
the image to fit into the selection area. You also can drag a graphic from
anywhere in your file system and drop it in the upper right corner of the front
panel window or block diagram window. LabVIEW converts the graphic to
a 32 x 32 pixel icon.

Use the Copy from option on the right side of the Icon Editor dialog box
to copy from a color icon to a black-and-white icon and vice versa. After you
select a Copy from option, click the OK button to complete the change.

@ Note If you do not draw a complete border around a VI icon, the icon background
appears transparent. When you select the icon on the block diagram, a selection marquee
appears around each individual graphic element in the icon.

© National Instruments Corporation 7-5 LabVIEW Introduction Course Manual

Lesson 7 Developing Modular Applications

The following tasks can be performed with these Icon Editor tools:

{? Use the Pencil tool to draw and erase pixel by pixel.
Use the Line tool to draw straight lines. To draw horizontal, vertical, and

- diagonal lines, press the <Shift> key while you use this tool to drag the
Cursor.

a“:" Use the Color Copy tool to copy the foreground color from an element in
the icon.

a Use the Fill tool to fill an outlined area with the foreground color.

Use the Rectangle tool to draw a rectangular border in the foreground color.
Double-click this tool to frame the icon in the foreground color.

Use the Filled Rectangle tool to draw a rectangle with a foreground color
frame and filled with the background color. Double-click this tool to frame
the icon in the foreground color and fill it with the background color.

= Use the Select tool to select an area of the icon to cut, copy, move, or make
L other changes. Double-click this tool and press the <Delete> key to delete
the entire icon.

A Use the Text tool to enter text into the icon. Double-click this tool to select
a different font. The Small Fonts option works well in icons.

EI Use the Foreground/Background tool to display the current foreground and
background colors. Click each rectangle to display a color palette from
which you can select new colors. The upper left rectangle indicates the

foreground color, the lower right rectangle indicates the background color.

Use the options on the right side of the editing area to perform the following
tasks:
* Show Terminals—Displays the terminal pattern of the connector pane

* OK—Saves the drawing as the icon and returns to the front panel
window

* Cancel—Returns to the front panel without saving any changes window

The menu bar in the Icon Editor dialog box contains more editing options
under the Edit menu such as Undo, Redo, Cut, Copy, Paste, and Clear.

LabVIEW Introduction Course Manual 7-6 ni.com

Lesson 7 Developing Modular Applications

Setting up the Connector Pane

Define connections by assigning a front panel control or indicator to each of
the connector pane terminals. To define a connector pane, right-click the
icon in the upper right corner of the front panel window and select Show
Connector from the shortcut menu to display the connector pane. The
connector pane appears in place of the icon. When you view the connector
pane for the first time, you see a connector pattern. You can select a different
pattern by right-clicking the connector pane and selecting Patterns from the
shortcut menu.

Each rectangle on the connector pane represents a terminal. Use the
rectangles to assign inputs and outputs. The connector pane generally has
one terminal for each control or indicator on the front panel. If you
anticipate changes to the VI that would require a new input or output, leave
extra terminals unassigned.

The following front panel has four controls and one indicator, so LabVIEW
displays four input terminals and one output terminal on the connector pane.

[+l slope.vi Front Panel *
File Edit Operate Tools Browse ‘Window Help]
=3 |{§}| ©|E| | 13pt Application Font | lE:
_AI
Wl 1
I.‘ l'\
ojo.00 0.0 Slope (m)
ID.DD
e s
éﬂn.uu ;}|0.00
-
Kl | >

Figure 7-4. Slope VI Front Panel

Selecting and Modifying Terminal Patterns

Select a different terminal pattern for a VI by right-clicking the connector
pane and selecting Patterns from the shortcut menu. For example, you can
select a connector pane pattern with extra terminals. You can leave the extra
terminals unconnected until you need them. This flexibility enables you to
make changes with minimal effect on the hierarchy of the VlIs.

You also can have more front panel controls or indicators than terminals.

A solid border highlights the pattern currently associated with the icon. You
can assign up to 28 terminals to a connector pane.

The most commonly used pattern is shown at left. This pattern is used as a
standard to assist in simplifying wiring.

© National Instruments Corporation 7-7 LabVIEW Introduction Course Manual

Lesson 7 Developing Modular Applications

Figure 7-5 shows an example of the standard layout used for terminal
patterns. The top inputs and outputs are commonly used for passing
references and the bottom inputs and outputs are used for error handling.

Inputs | Outputs

Reference In Reference Ouk
errar in (na errar) HEEH error auk
[Etk boaT]

Figure 7-5. Example Terminal Pattern Layout

@ Note Assigning more than 16 terminals to a VI can reduce readability and usability.

Assigning Terminals to Controls and Indicators

After you select a pattern to use for the connector pane, you must define
connections by assigning a front panel control or indicator to each of the
connector pane terminals. When you link controls and indicators to the
connector pane, place inputs on the left and outputs on the right to prevent
complicated, unclear wiring patterns in your VlIs.

To assign a terminal to a front panel control or indicator, click a terminal of
the connector pane, then click the front panel control or indicator you want
to assign to that terminal. Click an open space on the front panel. The
terminal changes to the data type color of the control to indicate that you
connected the terminal.

You also can select the control or indicator first and then select the terminal.

@ Note Although you use the Wiring tool to assign terminals on the connector pane to
front panel controls and indicators, no wires are drawn between the connector pane and
these controls and indicators.

LabVIEW Introduction Course Manual 7-8 ni.com

Lesson 7 Developing Modular Applications

C. Using SubVis

To place a subVI on the block diagram, click the Select a VI button on the
Functions palette. Navigate to the VI you want to use as a subVI and
double-click to place it on the block diagram.

You also can place an open VI on the block diagram of another open VI. Use
the Positioning tool to click the icon in the upper right corner of the front
panel or block diagram of the VI you want to use as a subVI and drag the
icon to the block diagram of the other VI.

Opening and Editing SubVlIs

To display the front panel of a subVI from the calling VI, use the Operating
or Positioning tool to double-click the subVI on the block diagram. To
display the block diagram of a subVI from the calling VI, press the <Ctrl>
key and use the Operating or Positioning tool to double-click the subVI on
the block diagram.

You can edit a subVI by using the Operating or Positioning tool to
double-click the subVI on the block diagram. When you save the subV]I, the
changes affect all calls to the subVI, not just the current instance.

Setting Required, Recommended, and Optional Inputs and Outputs

In the Context Help window, the labels of required terminals appear bold,
the labels of recommended terminals appear as plain text, and the labels of
optional terminals appear dimmed. The labels of optional terminals do not
appear if you click the Hide Optional Terminals and Full Path button,
shown as follows, in the Context Help window.

You can designate which inputs and outputs are required, recommended,
and optional to prevent users from forgetting to wire subVI terminals.

Right-click a terminal in the connector pane and select This Connection Is
from the shortcut menu. A checkmark indicates the terminal setting. Select
Required, Recommended, or Optional.

For terminal inputs, required means that the block diagram on which you
placed the subVI will not run if you do not wire the required inputs.
Required is not available for terminal outputs. For terminal inputs and
outputs, recommended or optional means that the block diagram on which
you placed the subVI can execute if you do not wire the recommended or
optional terminals. If you do not wire the terminals, the VI does not generate
any warnings.

© National Instruments Corporation 7-9 LabVIEW Introduction Course Manual

Lesson 7

Developing Modular Applications

Inputs and outputs of VIs in vi.1lib are already marked as Required,
Recommended, or Optional. LabVIEW sets inputs and outputs of VIs you
create to Recommended by default. Set a terminal setting to required only
if the VI must have the input or output to run properly.

Creating a SubVI from an Existing VI

You can simplify the block diagram of a VI by converting sections of the
block diagram into subVIs. Convert a section of a VI into a subVI by using
the Positioning tool to select the section of the block diagram you want to
reuse and selecting Edit»Create SubVI. An icon for the new subVI
replaces the selected section of the block diagram. LabVIEW creates
controls and indicators for the new subVI, automatically configures the
connector pane based on the number of control and indicator terminals you
selected, and wires the subVI to the existing wires.

Figure 7-6 shows how to convert a selection into a subVI.

Ye ¢ TTTTTTTTTTmTTmTTTTTTT H V2

Subtrack
Y1 Y1

Divide Slope (m) == Slope {m;)

1
1
1
1
1
1
1
|
1
B = ~
H %2 s
1
1
1
1
1
1
1
1
1
1

ne
Subkract

»l1 %1

Figure 7-6. Creating a New SubVI

The new subVI uses a default pattern for the connector pane and a default
icon. Double-click the subVI to edit the connector pane and icon, and to save
the subV1.

Do not select more than 28 objects to create a subVI because 28 is the maximum
number of connections on a connector pane. If your front panel contains more than

28 controls and indicators that you want to use programmatically, group some of them
into a cluster and assign the cluster to a terminal on the connector pane.

LabVIEW Introduction Course Manual 7-10 ni.com

Lesson 7 Developing Modular Applications

Exercise 7-1 Determine Warnings VI

Goal
Create the icon and connector pane for a VI so that you can use the VI as a
subVIL.

Scenario
You have created a VI that determines a warning string based on the inputs
given. Create an icon and a connector pane so that you can use this VI as a
subVL.

Design

The subVI contains the following inputs and outputs:

Table 7-1. Determine Warnings SubVI Inputs and Outputs

Inputs Outputs
Current Temp Warning Text
Max Temp Warning?
Min Temp

Use the standard connector pane to assure room for future expansion. Add
T an error input and error output to the VI so that the code runs if there is no
error, but does not run if there is an error.

© National Instruments Corporation 7-11 LabVIEW Introduction Course Manual

Lesson 7 Developing Modular Applications

Implementation

Open the Determine Warnings VI in the C: \Exercises\
LabVIEW Basics I\Determine Warnings directory.

Add an error input and an error output to the VI.
U Add an Error In 3D.ctl to the front panel.

U Add an Error Out 3D.ctl to the front panel.
Select a connector pane pattern for the VI.

O Right-click the icon in the upper-right corner of the window and
select Show Connector from the shortcut menu.

O Right-click the connector pane in the upper-right corner of the
window, select Patterns, from the shortcut menu, and choose the
pattern shown at left.

Connect the inputs and outputs to the connector as shown in Figure 7-7.

Determine Warnings.vi

Current Tem H
rent Temp] ~~ \arning Text j
Min Temﬁ E — - warning? -
E==-=n3rr|:|r ouk

errar in (Ao error)

® ®

Connections 2 Connector Pane ‘

LabVIEW Introduction Course Manual

Figure 7-7. Connector Pane Connections for Determine Warnings VI

Q Using the wiring tool, click the upper-left terminal of the connector
pane.

O Click the corresponding front panel control, Current Temp.

Notice that the connector pane terminal fills in with a color to match the
data type of the control connected to it.

Q Click the next terminal in the connector pane.
Q Click the corresponding front panel control, Max Temp.

 Continue wiring the connector pane until all controls and indicators
are wired, and the Context Help window matches that shown in
Figure 7-7.

7-12 ni.com

Lesson 7 Developing Modular Applications

5. Create an icon.

O Right-click the connector pane and select Edit Icon. The Icon Editor
window opens.

O Use the tools in the Icon Editor window to create an icon. Make the
icon as simple or as complex as you want, however, it should be
representative of the function of the VI. Figure 7-8 shows a simple
example of an icon for this VI.

13 Icon Editor

File Edit Help

B & Wy Copy From:

1 Black & White
WQR:HIHG
16 Colars

15 Calor 256 Colors

! [] show Terminals

. war:mnc
QK
256 Colors
"HEHIHG e
watin Help

Figure 7-8. Sample Warning Icon

O Click OK when you are finished to close the Icon Editor window.

@ Tip Double-click the selection tool to select the existing graphic. Press the <Delete> key
to delete the graphic. Then, double-click the rectangle tool to automatically create a
border for the icon.

@ Tip Double-click the text tool to modify fonts. You can select Small Fonts to choose
fonts smaller than 9 points in size.

6. Right-click the connector pane and select Show Icon from the shortcut
menu to return to Icon view.

7. Save the VL.
8. Switch to the block diagram.

9. Set the VI to execute if no error occurs, and not execute if an error
occurs.

© National Instruments Corporation 7-13 LabVIEW Introduction Course Manual

Lesson 7 Developing Modular Applications

error in (no error)
|IE

Min Termp
C

Maz Temp
[

Tlto Error B
M| False Vt
Current Temnp Warning Text
C b i @—{¥abc]

Heatstroke Warning

‘Warning?

errar aut

Laf

LabVIEW Introduction Course Manual

o 0O U U

Figure 7-9. No Error Case of Determine Warnings VI

Surround the block diagram code with a Case structure as shown in
Figure 7-9. Leave the Warning Text and Warning? indictors outside
of the Case structure.

Add the error in terminal to the left of the Case structure.
Add the error out terminal to the right of the Case structure.
Wire the error in terminal to the case selector terminal.

Confirm that the block diagram is in the No Error case. If it is not,
switch to the case containing the code, right-click the Case structure
and select Make this Case No Error from the shortcut menu.

Wire the error cluster through the Case structure to the error out
terminal as shown in Figure 7-9.

Switch to the Error case.
Wire the error cluster through the case to the error out tunnel.

Right-click the Warning? tunnel and select Create»Constant from
the shortcut menu.

Use the Operating tool to change the constant to True.

Right-click the Warning Text tunnel and select Create»Constant
from the shortcut menu.

7-14 ni.com

Lesson 7 Developing Modular Applications

U Enter Error in the constant.

O Confirm that you have completed the Error case as shown in
Figure 7-10.

Ij Errar Vt

‘Warning Text
babe]

‘Warning?

error in {no error) error out

Figure 7-10. Error Case of Determine Warnings VI
If an error enters the VI, the VI outputs Error in Warning Text, and True in
Warning? and passes out the error. If an error does not enter the VI, the VI
operates as originally designed.
10. Save and close the V1.
Test

Use a blank VI to test the subVI.
1. Open a blank VL
2. Open the block diagram.

3. Place the Determine Warnings subVI on the block diagram of the blank
test VI by selecting the Select a VI option on the Functions palette and
navigating to the C: \Exercises\LabVIEW_Basics_I\Determine
Warnings directory.

4. Create controls and indicators for each item in the subVI.

O Right-click the Current Temp terminal and select Create»Control
from the shortcut menu.

© National Instruments Corporation 7-15 LabVIEW Introduction Course Manual

Lesson 7 Developing Modular Applications
O Right-click the Max Temp terminal and select Create»Control
from the shortcut menu.

O Right-click the Min Temp terminal and select Create»Control
from the shortcut menu.

O Right-click the Warning Text terminal and select Create»
Indicator from the shortcut menu.

O Right-click the Warning? terminal and select Create»Indicator
from the shortcut menu.

5. Switch to the front panel.
6. Enter test values in Current Temp, Max Temp, and Min Temp.
7. Run the VI.

8. After you have finished testing, close the test VI. You do not need to save
the test VI.

End of Exercise 7-1

LabVIEW Introduction Course Manual 7-16 ni.com

Lesson 7 Developing Modular Applications

Self-Review: Quiz

1. On a subVI, which setting causes an error if the terminal is not wired?

a. Required
b. Recommended
c. Optional
2. You must create an icon to use a VI as a subVI.
a. True
b. False

© National Instruments Corporation 7-17 LabVIEW Introduction Course Manual

Lesson 7 Developing Modular Applications

Self-Review: Quiz Answers

1. On a subVI, which setting causes an error if the terminal is not wired?
a. Required
b. Recommended
c. Optional
2. You must create an icon to use a VI as a subV1.
a. True

b. False: you should customize the icon, but the default icon is
enough for functionality.

© National Instruments Corporation 7-19 LabVIEW Introduction Course Manual

Lesson 7 Developing Modular Applications

Notes

LabVIEW Introduction Course Manual 7-20 ni.com

Acquiring Data

A data acquisition (DAQ) system uses a data acquisition device to pass a
conditioned electrical signal to a computer for software analysis and data
logging. You can choose a data acquisition device that uses a PCI bus, a PCI
Express bus, a PXI bus, or the computer USB or IEEE 1394 port. This lesson
explains the hardware used in a data acquisition system, how to configure
the devices and how to program analog input and output, counters, and
digital input and output.

Topics

Using Hardware
Communicating with Hardware
Simulating a DAQ Device
Measuring Analog Input
Generating Analog Output
Using Counters

Using Digital I/0

Qmmounwp

© National Instruments Corporation 8-1 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

A. Using Hardware

A typical DAQ system has three basic types of hardware—a terminal block,
a cable, and a DAQ device, as shown in Figure 8-1.

]

=r |

ynﬂloml.
INSTRUMENTS

vmmomu
INSTRUMENTS

1 Signal 3 Cable 5 Computer
2 Terminal Block 4 DAQ Device

Figure 8-1. Typical DAQ System

After you have converted a physical phenomenon into a measurable signal
with or without signal conditioning, you need to acquire that signal. To
acquire a signal, you need a terminal block, a cable, a DAQ device, and a
computer. This hardware combination can transform a standard computer
into a measurement and automation system.

Using a Terminal Block and Cable

A terminal block provides a place to connect signals. It consists of screw or
spring terminals for connecting signals and a connector for attaching a cable
to connect the terminal block to a DAQ device. Terminal blocks have 100,
68, or 50 terminals. The type of terminal block you should choose depends
on two factors—the device and the number of signals you are measuring. A
terminal block with 68 terminals offers more ground terminals to connect a
signal to than a terminal block with 50 terminals. Having more ground
terminals prevents the need to overlap wires to reach a ground terminal,
which can cause interference between the signals.

LabVIEW Introduction Course Manual 8-2 ni.com

Lesson 8 Acquiring Data

Terminal blocks can be shielded or non-shielded. Shielded terminal blocks
offer better protection against noise. Some terminal blocks contain extra
features, such as cold-junction compensation, that are necessary to measure
a thermocouple properly.

A cable transports the signal from the terminal block to the DAQ device.
Cables come in 100-, 68-, and 50-pin configurations. Choose a
configuration depending on the terminal block and the DAQ device you are
using. Cables, like terminal blocks, are shielded or non-shielded.

Refer to the DAQ section of the National Instruments catalog or toni . com/
products for more information about specific types of terminal blocks and
cables.

DAQ Signal Accessory

Figure 8-2 shows the terminal block you are using for this course, the DAQ
Signal Accessory.

Power ‘7 NATIONAL A B
o ’ INSTRUMENTS Quadrature AJUT 1=~ 2 Relay DIO 5
Encoder B UL 200mA Max
o % % ag |0n
S o o el ao |off
/‘\ LN L
E E LN L
: : LN L
o||fss <l o2 °°® ||~ 24Pulses/rev ag |0
o o L) L) [
2|18 Bl ee| |ee|3 ag [0—
S Sleel|ee]2 Digital Trigger | 5@ |0 —
=g b ()) e |[A
8|z glesllzlls Digital Port 0 ag [ol—
[0 ° o = |
SHEE| gz 12 ©OO@OQO@ & (0
g_ b (}D) L) oo o 3 2 1 0 (L'jTI_@ O —
3;] 8 : : : : = Frequency Frequency Counters
e NIl oo oo .g_ Range Adjust
HES S| e e 13kHz-1MHz
I S| el |IB 1kHz-100kHz|;| @ _
.o .o 100Hz-10kHz Lo/ \HI
LN L .
. .o Analog Analog Function Temp Sensor
oo oo Out In___Generator Noise

T R
Temp Sensor

DAQ O Olg OO © PP VH00=°C

MicCh6 gignal Accessory Ch 0 1 1W\/\ Cho

ol
Bl

Figure 8-2. DAQ Signal Accessory

© National Instruments Corporation 8-3 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

The DAQ Signal Accessory is a customized terminal block designed for
learning purposes. It has three different cable connectors to accommodate
many different DAQ devices and spring terminals to connect signals. You
can access three analog input channels, one of which is connected to the
temperature sensor, and two analog output channels.

The DAQ Signal Accessory includes a function generator with a switch to
select the frequency range of the signal, and a frequency knob. The function
generator can produce a sine wave or a square wave. A connection to ground
is located between the sine wave and square wave terminal.

A digital trigger button produces a TTL pulse for triggering analog input or
output. When you press the trigger button, the signal goes from+5 Vto0 V
and returns to +5 V when you release the button. Four LEDs connect to the
first four digital lines on the DAQ device. The LEDs use reverse logic, so
when the digital line is high, the LED is off and vice versa.

The DAQ Signal Accessory has a quadrature encoder that produces two
pulse trains when you turn the encoder knob. Terminals are provided for the
input and output signals of two counters on the DAQ device. The DAQ
Signal Accessory also has a relay, a thermocouple input, and a microphone
jack.

Using DAQ Devices

Most DAQ devices have four standard elements: analog input, analog
output, digital I/O, and counters.

You can transfer the signal you measure with the DAQ device to the
computer through a variety of different bus structures. For example, you can
use a DAQ device that plugs into the PCI or PCI Express bus of a computer,
a DAQ device connected to the PCMCIA socket of a laptop, or a DAQ
device connected to the USB port of a computer. You also can use
PX1/CompactPCI to create a portable, versatile, and rugged measurement
system.

If you do not have a DAQ device, you can simulate one in Measurement and
Automation Explorer (MAX) to complete your software testing. You learn
to simulate a device in the Simulating a DAQ Device section of this lesson.

Refer to the DAQ section of the NI catalog or to ni . com/products for
more information about specific types of DAQ devices.

LabVIEW Introduction Course Manual 8-4 ni.com

Lesson 8 Acquiring Data

B. Communicating with Hardware

National Instruments data acquisition devices have a driver engine that
communicates between the device and the application software. There are
two different driver engines to choose from: NI-DAQmx and Traditional
NI-DAQ. You can use LabVIEW to communicate with these driver engines.
You have already used the DAQ Assistant in LabVIEW to communicate
with your data acquisition device. The DAQ Assistant is an Express VI that
communicates with NI-DAQmx.

In addition, National Instruments has a application that is useful for
configuring your data acquisition devices: Measurement & Automation
Explorer (MAX). In this section, you learn about the driver engines and
about using MAX to configure your data acquisition device.

Using NI-DAQ
NI-DAQ 7.0 contains two NI-DAQ drivers—Traditional NI-DAQ (Legacy)

and NI-DAQmx—each with its own application programming interface
(API), hardware configuration, and software configuration.

» Traditional NI-DAQ (Legacy) is an upgrade to NI-DAQ 6.9.x, the earlier
version of NI-DAQ. Traditional NI-DAQ (Legacy) has the same VIs and
functions and works the same way as NI-DAQ 6.9.x. You can use
Traditional NI-DAQ (Legacy) on the same computer as NI-DAQmx,
which you cannot do with NI-DAQ 6.9.x.

¢ NI-DAQmx is the latest NI-DAQ driver with new VlIs, functions, and
development tools for controlling measurement devices. The advantages
of NI-DAQmzx over previous versions of NI-DAQ include the DAQ
Assistant for configuring channels and measurement tasks for a device;
increased performance, including faster single-point analog I/O and
multithreading; and a simpler API for creating DAQ applications using
fewer functions and VlIs than earlier versions of NI-DAQ.

Traditional NI-DAQ (Legacy) and NI-DAQmzx support different sets of
devices. Refer to the National Instruments Web site at ni . com/daq for the
list of supported devices.

This lesson describes the NI-DAQmx APIL.

© National Instruments Corporation 8-5 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

When programming an NI measurement device, you can use NI application
software such as LabVIEW, LabWindows™/CVI™, and Measurement
Studio, or open ADEs that support calling dynamic link libraries (DLLs)
through ANSI C interfaces. Using NI application software greatly reduces
development time for data acquisition and control applications regardless of
which programming environment you use:

* LabVIEW supports data acquisition with the LabVIEW DAQ VIs,
a series of VIs for programming with NI measurement devices.

* For C developers, LabWindows/CVl is a fully integrated ANSI C
environment that provides the LabWindows/CVI Data Acquisition
library for programming NI measurement devices.

* Measurement Studio development tools are for designing your test and
measurement software in Microsoft Visual Studio .NET. Measurement
Studio includes tools for Visual C#, Visual Basic .NET, and
Visual C++ .NET.

DAQ Hardware Configuration

Before using a data acquisition device, you must confirm that the software
can communicate with the device by configuring the devices. The devices
are already configured for the computers in this class.

Windows

The Windows Configuration Manager keeps track of all the hardware
installed in the computer, including National Instruments DAQ devices. If
you have a Plug & Play (PnP) device, such as an E Series MIO device, the
Windows Configuration Manager automatically detects and configures the
device. If you have a non-PnP device, or legacy device, you must configure
the device manually using the Add New Hardware option in the Control
Panel.

You can verify the Windows Configuration by accessing the Device
Manager. You can see Data Acquisition Devices, which lists all

DAQ devices installed in the computer. Double-click a DAQ device to
display a dialog box with tabbed pages. The General tab displays overall
information regarding the device. The Resources tab specifies the system
resources to the device such as interrupt levels, DMA, and base address for
software-configurable devices. The NI-DAQ Information tab specifies the
bus type of the DAQ device. The Driver tab specifies the driver version and
location for the DAQ device.

Measurement & Automation Explorer

LabVIEW installs MAX, which establishes all device and channel
configuration parameters. After installing a DAQ device in the computer,
you must run this configuration utility. MAX reads the information the

LabVIEW Introduction Course Manual 8-6 ni.com

Lesson 8 Acquiring Data

Device Manager records in the Windows Registry and assigns a logical
device number to each DAQ device. Use the device number to refer to the
device in LabVIEW. Access MAX either by double-clicking the icon on the
desktop or selecting Tools»Measurement & Automation Explorer in
LabVIEW. The following window is the primary MAX window. MAX is
also the means for SCXI and SCC configuration.

X] My System - Measurement & Automation Explorer E]@
File Edit Yiew Tools Help

Configuration 2 |

aka Meighborhood

Devices Tnd Interfaces Natio“al II‘IStI‘I.I I‘I'IEI'ItS
Historical Data

(8 scsles Measurement & Automation
Software Explorer

1¥1 Drivers

.
.
.
.
.
% &Y Remote Systems what is Measurement & Automation

Explorer?

Measurement & Automation Explorer (MAX) provides
access to your National Instruments products,

What do you want to do?

Manage my devices and interfaces
Manage my installed Mational Instruments software

Manage virtual channels or tasks for my devices []

? Category Help

The device parameters that you can set using the configuration utility
depend on the device. MAX saves the logical device number and the
configuration parameters in the Windows Registry.

The plug and play capability of Windows automatically detects and
configures switchless DAQ devices, such as the PCI-6024E. When you
install a device in the computer, the device is automatically detected.

Scales

You can configure custom scales for your measurements. This is very useful
when working with sensors. It allows you to bring a scaled value into your
application without having to work directly with the raw values. For
example, in this course you use a temperature sensor that represents
temperature with a voltage. The conversion equation for the temperature is:
Voltage x 100 = Celsius. After a scale is set, you can use it in your
application program, providing the temperature value, rather than the
voltage.

© National Instruments Corporation 8-7 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

C. Simulating a DAQ Device

You can create NI-DAQmx simulated devices in NI-DAQmx 7.4 or later.
Using NI-DAQmx simulated devices, you can try NI products in your
application without the hardware. When you later acquire the hardware, you
can import the NI-DAQmx simulated device configuration to the physical
device using the MAX Portable Configuration Wizard. With NI-DAQmx
simulated devices, you also can export a physical device configuration onto
a system that does not have the physical device installed. Then, using the
NI-DAQmx simulated device, you can work on your applications on a
portable system and upon returning to the original system, you can easily
import your application work.

Creating NI-DAQmx Simulated Devices
To create an NI-DAQmx simulated device, complete the following steps:
1. Expand Devices and Interfaces.

2. Right-click NI-DAQmx Devices and select Create New NI-DAQmx
Device»NI-DAQmx Simulated Device.

3. In the Choose Device dialog box, select the family of devices for the
device you want to simulate.

4. Select the device and click OK.

5. If you select a PXI device, you are prompted to select a chassis number
and PXI slot number.

6. If you select an SCXI chassis, the SCXI configuration panels open.

Removing NI-DAQmx Simulated Devices
To remove an NI-DAQmx simulated device, complete the following steps:
1. Expand Devices and Interfaces»NI-DAQmx Devices.
2. Right-click the NI-DAQmx simulated device you want to delete.
3. Click Delete.

@ Note In the configuration tree in MAX, the icons for NI-DAQmx simulated devices are
yellow. The icons for physical devices are green.

LabVIEW Introduction Course Manual 8-8 ni.com

Lesson 8 Acquiring Data

Exercise 8-1 Concept: MAX
Goal

To use MAX to examine, configure, and test a device.

Description

Complete the following steps to examine the configuration for the

DAQ device in the computer using MAX and use the test routines

in MAX to confirm operation of the device. If you do not have a DAQ
device, you can simulate a device using the instructions in Part A. Creating
a Simulated Device.

Note Portions of this exercise that can only be completed with the use of a real device
and a DAQ signal accessory are marked Hardware Installed. Some of these steps have
alternative instructions for simulated devices and are marked No Hardware Installed.

1. Launch MAX by double-clicking the icon on the desktop or by selecting
Tools»Measurement & Automation Explorer in LabVIEW. MAX
searches the computer for installed National Instruments hardware and
displays the information.

Part A. Creating a Simulated Device

2. Create an NI-DAQmx simulated device to allow you to complete the
exercises in this chapter without hardware. If you have a DAQ device
installed, you can skip this step and go to Part B.

O Expand Devices and Interfaces.

O Right-click NI-DAQmx Devices and select Create New
NI-DAQmx Device»NI-DAQmx Simulated Device.

U In the Choose Device dialog box, select M Series DAQ»
NI PCI 6225.

Q Click OK.

Part B. Examining the DAQ Device Settings

3. Expand the Devices and Interfaces section.

4. Expand the NI-DAQmx Devices section to view the installed National
Instruments devices that use the NI-DAQmx driver.

© National Instruments Corporation 8-9 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

5. Select the device listed in the NI-DAQmx Devices section. Figure 8-3

shows the PCI-MIO-16E-4 device.

@ PCI-MIO-16E-4: "Dev1™ - Measurement & Automation Explorer

M=%

File Edit Yiew Tools Help

+ y Ports {Serial & Parallel)) S
+-PXI P¥I System (Unidentified)
+ Traditional NI-DAG {Legacy) Devices

+ @ Histarical Drata

+-[3 Scales

+ Software

+ IVI Drivers

+ @ Remote Systems

[Ehself-Test Test Panels. ..

| Yalue

Configuration 2| 5/ Properties
=] @ My Systemn
+ Data Meighborhood Name.
=] Devices and Interfaces v Serial Number
+1. (B8 GPIBD (PCI-GPIE) ésmkﬁt Mumber
- LD Devi = Bus Mumber

Memory Range 1
Py mory Range 2
IR Level

OxBADFSE

0x9

Ox1

0xFOFFEDDD - 0xFDFFEFFF
0xFOFFDO00 - 0=FOFFDFFF
0x5

g Attributes | @ Device Houtes] ‘%l Ealibration]

Figure 8-3.

MAX with Device and Interfaces expanded

MAX displays the National Instruments hardware and software in the
computer. The device number appears in quotes following the device
name. The Data Acquisition VIs use this device number to determine
which device performs DAQ operations. MAX also displays the
attributes of the device such as the system resources that the device uses.

Note You might have a different device installed, and some of the options shown might

be different. Click the Show Help/Hide Help button in the top right corner of MAX to
hide the online help and show the DAQ device information. However, the Show

Help/Hide Help button only appears in certain cases.

6.

LabVIEW Introduction Course Manual

Select the Device Routes tab to see detailed information about the
internal signals that can be routed to other destinations on the device, as
shown in Figure 8-4. This is a powerful resource that gives you a visual
representation of the signals that are available to provide timing and
synchronization with components that are on the device and other

external devices.

ni.com

Lesson 8 Acquiring Data

@ PCI-MIO-16E-4: "Dev1™ - Measurement & Automation Explorer

M=%

File Edit

Configuration

Wiews Tools Help

Al

=] @ My Systemn
+ Data Meighborhood
= Devices and Interfaces

+ GPIED {PCI-GPIE)
= MI i
@ PCI-MIO-16E-4: "Dev
+ y Ports {Serial & Parallel)
+-PXI P¥I System (Unidentified)
+ Traditional NI-DAG {Legacy) Devices

+ @ Histarical Drata

+-[3 Scales
+ Software

IVI Drivers

+ @ Remote Systems

[Properties [Ehself-Test Test Panels. .. »
This panel shows the routes that can)
be made within this device. e e
Indirect Route Through Subsystem
~
E = - o fa] =+ u) - oo
B0 o o o o N S i I i I i i
o R e = e e A A R -
F I T I I~ I -~ - I
n il il il il il il il il il
Sources ajlejelaja|a|a|a |8 |8
{Dev1{PFID
[Dev1{PFIL
[Dev PRIz
[Dev1{PFL3
[Dev1{PFI4 v
< 10l | B
Subsystem Used {Hover over cell to see which one is used)
Counter O

£ Atibutes g Device Routes “| Calibration

Figure 8-4. Device Routes

7. Select the Calibration tab, as shown in Figure 8-5, to see information
about the last time the device was calibrated both internally and

externally.

@ PCI-MIO-16E-4: "Dev1™ - Measurement & Automation Explorer

M=%

File Edit

Configuration

Wiews Tools Help

| [Properties Ei‘JSeIF-Test

¥

¥

¥

¥

¥

=] @ My Systemn

Data Meighborhood
Devices and Interfaces
+-[E8 GPIEO (PCI-GPIE)
MI-DACmx Devices
+ y Parl

+-PXI P¥I System (Unidentified)
+ Traditional NI-DAG {Legacy) Devices
@ Histarical Drata
A scales
Software
IVI Drivers

+ @ Remote Systems

External Calibration

Last Calibration DatesTime:
Expiration D ate/Time:
Temperature:

Comments:

Self-Calibration
Last Calibration DatesTime:

Temperature:

Device Properties

Current Temperature:

iy | Attributes] @ Device Routes 4f| Calibration

Test Panels. .. | fehshow Help

4/26/2000 1:00 AM
4/26/2001 1:00 AM
3BT

1/26/2004 3:30 AM
27T

[RFE

© National Instruments Corporation

Figure 8-5. Calibration

LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

8. Right-click the NI-DAQmx device in the configuration tree and select
Self-Calibrate to calibrate the DAQ device using a precision voltage
reference source and update the built-in calibration constants. When the
device has been calibrated, the Self Calibration information updates in
the Calibration tab. Skip this step if you are using a simulated device.

Part C. Testing the DAQ Device Components

9. Click the Self-Test button to test the device. This tests the system
resources assigned to the device. The device should pass the test because
it is already configured.

10.

LabVIEW Introduction Course Manual

Click the Test Panels button to test the individual functions of the
DAQ device, such as analog input and output. The Test Panels dialog
box appears.

Q

Use the Analog Input tab to test the various analog input channels
on the DAQ device. Click the Start button to acquire data from
analog input channel 0.

— If you have a DAQ Signal Accessory, channel Dev1/ai0 is
connected to the temperature sensor. Place your finger on the
sensor to see the voltage rise. You also can move the Noise
switch to On on the DAQ Signal Accessory to see the signal
change in this tab. When you are finished, click the Stop button.

— If you are using a simulated device, a sine wave is shown on all
input channels. Experiment with the setting on this tab. When
you are finished, click the Stop button.

Click the Analog Output tab to set up a single voltage or sine wave
on one of the DAQ device analog output channels.

Change the output Mode to Sinewave Generation and click the
Start button. LabVIEW generates a continuous sine wave on analog
output channel 0.

If you have hardware installed, wire Analog Out ChO to Analog In
Ch1 on the DAQ Signal Accessory.

If you have hardware installed, click the Analog Input tab and
change the channel to Devl/ail. Click the Start button to acquire
data from analog input channel 1. LabVIEW displays the sine wave
from analog output channel 0.

Click the Digital I/O tab to test the digital lines on the DAQ device.

8-12 ni.com

Lesson 8 Acquiring Data

O Set lines O through 3 as output and toggle the Logic Level
checkboxes. If you have a DAQ signal accessory, toggling the boxes
turns the LEDs on or off. The LEDs use negative logic.

Q If you have hardware installed, click the Counter 1/O tab to
determine if the DAQ device counter/timers are functioning
properly. To verify counter/timer operation, change the counter
Mode tab to Edge Counting and click the Start button. The
Counter Value increments rapidly. Click Stop to stop the counter
test.

U Click the Close button to close the Test Panel and return to MAX.

Part D. Setting a Custom Scale

Complete this section only if you have hardware installed. If you do not have
hardware installed, you are finished with this exercise.

11. Create a custom scale for the temperature sensor on the DAQ Signal
Accessory. The sensor conversion is linear, and the formula is
Voltage x 100 = Celsius.

R Temperature - Measurement & Automation Explorer E]@
File Edit Wiew Tools Help

Configuration ~ <Bshow Help

= @ My System %

+ Diata Meighborhood
+ Devices and Interfaces
+- [Historical Data
- A Scales
= [ad] MNI-DAQMX Scales
4 4 Temperakture
+ Sofbware
+-|gEgy [V Drivers
+ @ Remaoke Syskems

Linear Scale

scaling Parameters
Slope ‘f-Inkercept
100 1]

Celsius

Resulting Equation
¥=100x+0

10

Waolts
Units

Pre-5caled Sraled
‘olts v Zelsius

gl MI-DAGMm: Scale

Figure 8-6. Temperature Scale

© National Instruments Corporation 8-13 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

U

Right-click the Scales section and select Create New from the
shortcut menu.

Select NI-DAQmx Scale.

Click Next.

Select Linear.

Name the scale Temperature.

Click Finish.

Change the Scaling Parameters Slope to 100.

Enter Celsius as the Scaled Units.

o 0o J J U o o o

Click the Save button on the toolbar to save the scale. You use this
scale in later exercises.

12. Close MAX by selecting File»Exit.

End of Exercise 8-1

LabVIEW Introduction Course Manual 8-14 ni.com

Lesson 8 Acquiring Data

D. Measuring Analog Input

Analog input is the process of measuring an analog signal and transferring
the measurement to a computer for analysis, display or storage. An analog
signal is a signal that varies continuously. Analog input is most commonly
used to measure voltage or current. You can use many types of devices to
perform analog input, such as multifunction DAQ (MIO) devices,
high-speed digitizers, digital multimeters (DMMs) and Dynamic Signal
Acquisition (DSA) devices.

Performing Analog-to-Digital Conversion

Acquiring an analog signal with a computer requires a process known as
analog-to-digital conversion, which takes an electrical signal and translates
it into digital data so that a computer can process it. Analog-to-digital
converters (ADCs) are circuit components that convert a voltage level into
a series of ones and zeroes.

ADCs sample the analog signal on each rising or falling edge of a sample
clock. In each cycle, the ADC takes a snapshot of the analog signal, so that
the signal can be measured and converted into a digital value. A sample
clock controls the rate at which samples of the input signal are taken.
Because the incoming, or unknown signal is a real world signal with infinite
precision, the ADC approximates the signal with fixed precision. After the
ADC obtains this approximation, the approximation can be converted to a
series of digital values. Some conversion methods do not require this step,
because the conversion generates a digital value directly as the ADC reaches
the approximation.

Using Task Timing

When performing analog input, the task can be timed to Acquire 1 Sample,
Acquire n Samples, or Acquire Continuously.

Acquire 1 Sample

Acquiring a single sample is an on-demand operation. In other words, the
driver acquires one value from an input channel and immediately returns the
value. This operation does not require any buffering or hardware timing. For
example, if you periodically monitor the fluid level in a tank, you would
acquire single data points. You can connect the transducer that produces a
voltage representing the fluid level to a single channel on the measurement
device and initiate a single-channel, single-point acquisition when you want
to know the fluid level.

© National Instruments Corporation 8-15 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

Acquire n Samples

One way to acquire multiple samples for one or more channels is to acquire
single samples in a repetitive manner. However, acquiring a single data
sample on one or more channels over and over is inefficient and time
consuming. Moreover, you do not have accurate control over the time
between each sample or channel. Instead you can use hardware timing,
which uses a buffer in computer memory, to acquire data more efficiently.
Programmatically, you need to include the timing function and specify the
sample rate and the sample mode (finite). As with other functions, you can
acquire multiple samples for a single channel or multiple channels.

With NI-DAQmx, you also can gather data from multiple channels. For
example, you might want to monitor both the fluid level in the tank and the
temperature. In such a case, you need two transducers connected to two
channels on the device.

Acquire Continuously

If you want to view, process, or log a subset of the samples as they are
acquired, you need to continually acquire samples. For these types of
applications, set the sample mode to continuous.

Using Task Triggering

A device controlled by NI-DAQmx reacts to a stimulus that causes the
device to take a specific action. Every NI-DAQmzx action needs a stimulus
or cause. Two common actions include producing a sample and starting a
waveform acquisition. After the stimulus occurs, the action is performed.

The causes for actions are called triggers. For example, a start trigger starts
data acquisition. The reference trigger establishes the reference point in a set
of input samples. Data acquired up to the reference point is pretrigger data.
Data acquired after the reference point is posttrigger data.

LabVIEW Introduction Course Manual 8-16 ni.com

Exercise 8-2 Triggered Analog Input VI

Goal

Lesson 8 Acquiring Data

To acquire an analog signal using a DAQ device and a digital trigger.

Scenario

Build a VI that measures the voltage signal on channel AIl of the DAQ
device. The VI begins measuring when a digital trigger is pressed and the
Power switch on the front panel is on. The VI stops measuring when the

Power switch on the front panel is off.

Design

User Interface Inputs and Outputs

Type Name Properties
Waveform Analog Input Data | X-Scale range: 1/100 second
Chart
Vertical Toggle | Power —

Switch

External Inputs and Outputs

* Inputs: All of the data acquisition device. Connect the sine function
generator to channel analog input 1 on the DAQ Signal Accessory with
a wire. You also can use a DAQ Simulated Device to acquire data.

© National Instruments Corporation

8-17

LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

Implementation

In the following steps, you build the front panel shown in Figure 8-7.

I
)

||I I|| I|||

|1

I

1
I
|

'|

i
|

A
|| |I
|

volkage m

Tirme

e

LabVIEW Introduction Course Manual

Figure 8-7. Triggered Analog Input front panel
Open a blank VL.
Create the Analog Input Data waveform chart.
0 Add a Waveform Chart to the front panel window.
U Rename the waveform chart Analog Input Data.
O Resize the waveform chart to increase the x-axis.
Create the Power vertical toggle switch.
O Add a vertical toggle switch to the front panel window.
Q Rename the switch Power.
U Create two free labels, Off and On, using the Labeling tool.
U Add the free labels as shown in Figure 8-7.

Save the VI as Triggered Analog Input.vi inthe
C:\Exercises\LabVIEW Basics I\Triggered Analog Input
directory.

8-18 ni.com

Lesson 8 Acquiring Data

In the following steps, you build the block diagram shown in Figure 8-8.

DAD Assiskarkt finalog Input Data

dat_a

Figure 8-8. Triggered Analog Input Block Diagram

5. Set up the DAQ Assistant to acquire data on All at SOKHz when the
digital trigger is pressed. If you are using a simulated device, acquire the
data without using a trigger.

© National Instruments Corporation

Q

o U U U 0

U

Switch to the block diagram.

Add the DAQ Assistant Express VI to the block diagram.
Select Analog Input»Voltage for the measurement to make.
Select Devlx»ail for the physical channel.

Click the Finish button.

Set the Signal Input Range on the Settings tab to a range of 1 to
—1 Volts.

Set the Acquisition Mode on the Task Timing tab to Continuous.

Set the Samples to Read in the Clock Settings section of the Task
Timing tab to 5000. The number of samples defines the amount of
data removed from the buffer at one time.

Set the Rate (Hz) in the Clock Settings section of the Task Timing
tab to 20k.

If you are using the DAQ Signal Accessory, switch to the Task
Triggering tab. If you are using a NI-DAQmx Simulated Device,
click the OK button and skip to step 6.

Set the Trigger Type in the Start Trigger section of the Task
Triggering tab to Digital Edge.

Set the Trigger Source to PFI0.

8-19 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

10.

11.

12.

13.

LabVIEW Introduction Course Manual

O Set the Edge to Rising.

Q Click the OK button to close the Analog Input Voltage Task
Configuration dialog box.

When prompted, allow LabVIEW to auto-generate a While Loop.
Notice that it creates the While Loop and a Stop button for you.

Delete the Stop button; you use the Power switch instead.
Add the Power terminal to the While Loop.

Wire the Power terminal to the Stop input of the DAQ Assistant.

Convert the acquired data to an array of numerics to graph the data by

sample number rather than time.

Q Add a Convert from Dynamic Data Express VI to the While Loop.

U In the Config dialog box Select 1D array of scalars - automatic in

the Resulting data type listbox.
O Click OK.
Confirm that the block diagram is wired as shown in Figure 8-8.
Switch to the front panel.

Save the VI.

8-20

ni.com

Test

Lesson 8 Acquiring Data

If you are using the DAQ Signal Accessory, confirm that a wire connects
the sine function generator to analog in Ch 1.

Use the Operating Tool to add the Power switch in the On position.

Run the VI, then follow the instructions in either the Hardware
Installed column or the No Hardware Installed column to begin

acquiring data.

Hardware Installed

No Hardware Installed

Press the Digital Trigger button
on the DAQ Signal Accessory.
The waveform chart should start
displaying a sign wave.

The waveform chart should start
displaying a sign wave. You do
not use a trigger because there is
no physical trigger to switch.

Change the frequency of the sign

wave using the Frequency Adjust
dial on the DAQ Signal
Accessory.

Switch the Power switch to the Off position when you are finished. The
VI should stop.

What happens if you start the VI with the switch in the Off position? Is
this desired behavior?

Modify the Power switch so that it returns to the On position after it is
pressed, and the On position is the default value.

U Use the Operating tool to add the Power switch to the On position.

O Right-click the Power switch and select Data Operations»Make
Current Value Default from the shortcut menu.

O Right-click the Power switch and select Mechanical Action»Latch
When Pressed from the shortcut menu.

Run the VI. Does the Power switch behave as you expect?

Stop and close the VI.

End of Exercise 8-2

© National Instruments Corporation

8-21 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

E. Generating Analog Output

Analog output is the process of generating electrical signals from your
computer. Analog output is generated by performing digital-to-analog
(D/A) conversions. The available analog output types for a task are voltage
and current.

To perform a voltage or current task, a compatible device must be installed
that can generate that form of signal.

Performing Task Timing

When performing analog output, the task can be timed to Generate
1 Sample, Generate n Samples, or Generate Continuously.

Generating 1 Sample

Use single updates if the signal level is more important than the generation
rate. For example, generate one sample at a time if you need to generate a
constant, or DC, signal. You can use software timing to control when the
device generates a signal.

This operation does not require any buffering or hardware timing. For
example, if you need to generate a known voltage to stimulate a device,
a single update would be an appropriate task.

Generating n Samples

One way to generate multiple samples for one or more channels is to
generate single samples in a repetitive manner. However, generating a single
data sample on one or more channels over and over is inefficient and time
consuming. Moreover, you do not have accurate control over the time
between each sample or channel. Instead, you can use hardware timing,
which uses a buffer in computer memory to generate samples more
efficiently.

You can use software timing or hardware timing to control when a signal is
generated. With software timing, the rate at which the samples are generated
is determined by the software and operating system instead of by the
measurement device. With hardware timing, a TTL signal, such as a clock
on the device, controls the rate of generation. A hardware clock can run
much faster than a software loop. A hardware clock is also more accurate
than a software loop.

@ Note Some devices do not support hardware timing. Consult the device documentation
if you are unsure if the device supports hardware timing.

LabVIEW Introduction Course Manual 8-22 ni.com

Lesson 8 Acquiring Data

Programmatically, you need to include the timing function, specifying the
sample rate and the sample mode (finite). As with other functions, you can
generate multiple samples for a single channel or multiple channels.

Use Generate n Samples if you want to generate a finite time-varying signal,
such as an AC sine wave.

Generating Continuously

Continuous generation is similar to Generate n Samples, except that an
event must occur to stop the generation. If you want to continuously
generate signals, such as generating a non-finite AC sine wave, set the
timing mode to continuous.

Performing Task Triggering

When a device controlled by NI-DAQmzx does something, it performs an
action. Two very common actions are producing a sample and starting a
generation. Every NI-DAQmx action needs a stimulus or cause. When the
stimulus occurs, the action is performed. Causes for actions are called
triggers. A start trigger starts the generation.

Performing Digital-to-Analog Conversion

Digital-to-analog conversion is the opposite of analog-to-digital conversion.
In digital-to-analog conversion, the computer generates the data. The data
might have been acquired earlier using analog input or may have been
generated by software on the computer. A digital-to-analog converter (DAC)
accepts this data and uses it to vary the voltage on an output pin over time.
The DAC generates an analog signal that the DAC can send to other devices
or circuits.

A DAC has an update clock that tells the DAC when to generate a new value.
The function of the update clock is similar to the function of the sample
clock for an analog-to-digital converter (ADC). At each cycle the clock, the
DAC converts a digital value to an analog voltage and creates an output as a
voltage on a pin. When used with a high speed clock, the DAC can create a
signal that appears to vary constantly and smoothly.

© National Instruments Corporation 8-23 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

F. Using Counters

A counter is a digital timing device. You typically use counters for event
counting, frequency measurement, period measurement, position
measurement, and pulse generation.

* Count Register—Stores the current count of the counter. You can query
the count register with software.

* Source—An input signal that can change the current count stored in the
count register. The counter looks for rising or falling edges on the source
signal. Whether a rising or falling edge changes the count is software
selectable. The type of edge selected is referred to as the active edge of
the signal. When an active edge is received on the source signal, the
count changes. Whether an active edge increments or decrements the
current count is also software selectable.

* Gate—An input signal that determines if an active edge on the source
changes the count. Counting can occur when the gate is high, low, or
between various combinations of rising and falling edges. Gate settings
are made in software.

* Output—An output signal that generates pulses or a series of pulses,
otherwise known as a pulse train.

When you configure a counter for simple event counting, the counter
increments when an active edge is received on the source. In order for the
counter to increment on an active edge, the counter must be armed or started.
A counter has a fixed number it can count to as determined by the resolution
of the counter. For example, a 24-bit counter can count to:

2(Counter Resolution) —] =224 _ 1 = 16,777,215

When a 24-bit counter reaches the value of 16,777,215, it has reached the
terminal count. The next active edge forces the counter to roll over and start
at 0.

LabVIEW Introduction Course Manual 8-24 ni.com

Lesson 8 Acquiring Data

Exercise 8-3 Count Events VI

Goal
Use the DAQ Assistant to input a counter value.

Scenario
You have been asked to build a VI that counts pulses from the quadrature
encoder on the DAQ Signal Accessory.

Design

@ Note Complete this exercise only if you have hardware installed.

Quadrature Encoder

A 24-pulse per revolution mechanical quadrature encoder measures the
position of a shaft as it rotates. The DAQ signal accessory quadrature
encoder is a knob located in the upper central portion of the top panel. The
quadrature encoder produces two pulse train outputs corresponding to the
shaft position as you rotate the knob. Depending on the direction of rotation,
phase A leads phase B by 90° or phase B leads phase A by 90°.

The DAQ Signal Accessory internally connects phase B of the quadrature
encoder to the Up/Down line for Counter O (DIO6). Connect phase A of the
quadrature encoder to the Source of Counter O (PFIS).

User Interface Inputs and Outputs

Type Name Properties

Numeric Indicator Number of Events Double

Stop Button stop (F) —

External Inputs
* Counter 0 Source (PFI8): Phase A of quadrature encoder
* Counter 0 Up/Down (DIO6): Phase B of quadrature encoder

© National Instruments Corporation 8-25 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

Implementation

LabVIEW Introduction Course Manual

Open a blank VL.

Create an indictor for the current count.

Q Add a numeric indictor to the front panel window.
U Label the numeric indicator Number of Events.

Save the VI as Count Events.vi in the C: \Exercises\LabVIEW
Basics I\Count Events directory.

Switch to the block diagram.
Configure the DAQ Assistant Express VI to use the counter to perform

event counting.

Wait: Unkil Fext ms Multiple

100
(N,

D) Assistant Mumber of Events
data == b OEL ||

o

Figure 8-9. Count Events VI Block Diagram

Add the DAQ Assistant Express VI to the block diagram.

Select Counter Input»Edge Count for the measurement to make.
Select Devl»ctr0 for the physical channel.

Click the Finish button.

Change the Active Edge pull-down menu to Falling.

o 0O U0 U U U

Change the Count Direction pull-down menu to Externally
Controlled.

U

Click the OK button to close the configuration dialog box.

O When asked, allow LabVIEW to auto-generate a While Loop.

8-26 ni.com

Lesson 8 Acquiring Data

6. Finish building the block diagram. Use Figure 8-9 as a guide to assist
you.

@ Note LabVIEW can convert the dynamic type automatically, or you can use the From
DDT Express VI to convert it.

7. Save the VL

Test

1. On the DAQ Signal Accessory, confirm that the A output of the
quadrature encoder is wired to the SOURCE input of counter 0.

2. Run the VL.

A Caution If the VI does not work as you expect, you may need to reset the DAQ Device
in MAX.

3. Rotate the quadrature encoder knob on the DAQ Signal Accessory.
Notice that the Number of Events indicator increments as you rotate the
knob. The quadrature encoder knob produces pulses as you rotate the
knob. The counter counts these pulses.

Rotate the quadrature encoder knob in the other direction. Notice that
the Number of Events indicator increments when you rotate the knob
clockwise, and decrements when you rotate the knob counterclockwise.

4. Stop the VL.

5. Save and close the VI.

End of Exercise 8-3

© National Instruments Corporation 8-27 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

G. Using Digital 1/0

Digital signals are electrical signals that transfer digital data over a wire.
These signals typically have only two states: on and off, also known as high
and low, or 1 and 0. When sending a digital signal across a wire, the sender
applies a voltage to the wire and the receiver uses the voltage level to
determine the value being sent. The voltage ranges for each digital value
depend on the voltage level standard being used. Digital signals have many
uses; the simplest application of a digital signal is controlling or measuring
digital or finite state devices such as switches and LEDs. Digital signals also
can transfer data; you can use them to program devices or communicate
between devices. In addition, you can use digital signals as clocks or triggers
to control or synchronize other measurements.

You can use the digital lines in a DAQ device to acquire a digital value. This
acquisition is based on software timing. On some devices, you can configure
the lines individually to either measure or generate digital samples. Each
line corresponds to a channel in the task.

You can use the digital port(s) in a DAQ device to acquire a digital value
from a collection of digital lines. This acquisition is based on software
timing. You can configure the ports individually to either measure or
generate digital samples. Each port corresponds to a channel in the task.

LabVIEW Introduction Course Manual 8-28 ni.com

Exercise 8-4

Goal

Scenario

Design

Lesson 8 Acquiring Data

Optional: Digital Count VI

Use the DAQ Assistant for digital 1/0.

Write a VI that converts the number of events generated by the quadrature
encoder to a digital number to display on the LEDs on the DAQ Signal
Accessory. Because there are only four LEDs, you are limited to a number
between 0 and 15 (24). For numbers greater than 15 and less than 0, the
LEDs should continue changing as though there were more LEDs available.

@ Note Complete this exercise only if you have hardware installed.

Digital 1/0

Each LED is wired to a digital line on the DAQ device. The lines are
numbered 0, 1, 2, and 3, starting with the LED on the right. You can write
to these lines individually or as a digital port. However, the digital port
includes all 8 DIO lines. Because the quadrature encoder uses DIO6 for
up/down counting, you cannot write to DIO6. Therefore, in this example,
you should write a Boolean array to digital lines 0—4.

Flowchart

When a number is converted to a Boolean array, the number of elements in
the array depends on the representation of the number used. If the number
is 32-bytes, there are 32 elements in the Boolean array. However, because

there are only four LEDs, you only need the first four elements of the array.

© National Instruments Corporation 8-29 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

Modify the Count Events VI as shown in the following flowchart.

?

Acquire
Counter 0
Output

\ 4

Convert
Output to a
Boolean
Array

A4

Reduce the

Array to a

4 Element
Array

\ 4

Write Boolean
Array to Digital

LabVIEW Introduction Course Manual

Lines0-3
Yes
Figure 8-10. Digital Count Flowchart
8-30 ni.com

Implementation

Lesson 8 Acquiring Data

Open Count Events.vi inthe C:\Exercises\LabVIEW
Basics I\Count Events directory.

Save the VI as Digital Count.vi.

Switch to the block diagram of the VI.

4.

5.

6.
|| E=T

7.

© National Instruments Corporation

stop (F)

Mumber of Events 100 g.
FEBL] b =

» H
i
¥

DA Assiskank

I3
13
¥

daka s DAQ Assistank?

" stap (F) ¥ data

stopped e -k stop (T)

.

Figure 8-11. Digital Count VI Block Diagram

Delete the wire connected to the Number of Events terminal.

Enlarge the While Loop and increase the amount of space between the
DAQ Assistant and the conditional terminal.

Convert the count to a Boolean Array.

Q

Q

Add a Convert From Dynamic Data Express VI to the right of the
data output of the DAQ Assistant.

Set the resulting data type to Single Scalar.
Click OK to close the dialog box.

Add a Number to Boolean Array function to the right of the Convert
From Dynamic Data Express VI.

Wire as shown in Figure 8-11.

Create a subarray containing the first four elements of the Boolean array.

Q

Add the Array Subset function to the right of the Number to Boolean
Array function.

Wire the output of the Number to Boolean Array function to the
array terminal of the Array Subset function.

Right-click the index terminal and select Create»Constant from
the shortcut menu.

8-31 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

U Set the constant to 0.

O Right-click the length terminal and select Create»Constant from
the shortcut menu.

U Set the constant to 4.

8. Configure digital lines 0-3 for edge counting.

[E i U Add the DAQ Assistant Express VI to the While Loop.

Q Select Digital I/O»Line Output for the measurement to make.

O Select Devl»line 0-line 3 for the physical channels and click the
Finish button.

O For each line, select Invert Line because the LEDs use negative
logic.

U Click the OK button to close the configuration dialog box.

@ Note In this exercise, you use individual lines rather than a port because DIO6 is used
by Phase B of the Quadrature Encoder.

9. Wire the block diagram as shown in Figure 8-11.

10. Save the VI.

Test
1. Display the front panel.
2. Run the VL.
3. Turn the quadrature encoder and observe the changes on the DAQ Signal

Accessory.

4. Stop and close the VI.

End of Exercise 8-4

LabVIEW Introduction Course Manual 8-32 ni.com

Lesson 8 Acquiring Data

Self-Review: Quiz

1. You are reading a signal at 50 kHz. You want to acquire the signal until
a stop trigger is pressed. Which task timing should you use?

a. Acquire 1 Sample
b. Acquire N Samples
c. Acquire Continuously

2. Your VI monitors a factory floor. Part of the VI controls an LED which
is used to alert users to the status of the system. Which task timing
should you use?

a. Generate 1 Sample
b. Generate N Samples

c. Generate Continuously

© National Instruments Corporation 8-33 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

Self-Review: Quiz Answers

1. You are reading a signal at 50kHz. You want to acquire the signal until
a stop trigger is pressed. Which task timing should you use?

a. Acquire 1 Sample
b. Acquire N Samples
¢. Acquire Continuously

2. Your VI monitors a factory floor. Part of the VI controls an LED which
is used to alert users to the status of the system. Which task timing
should you use?

a. Generate 1 Sample
b. Generate N Samples

c. Generate Continuously

© National Instruments Corporation 8-35 LabVIEW Introduction Course Manual

Lesson 8 Acquiring Data

Notes

LabVIEW Introduction Course Manual 8-36 ni.com

Instrument Control

This lesson describes instrument control of stand-alone instruments using a
GPIB or serial interface. Use LabVIEW to control and acquire data from
instruments with the Instrument I/O Assistant, the VISA API, and
instrument drivers.

Topics

Using Instrument Control

Using GPIB

Using Serial Port Communication
Using Other Interfaces

Software Architecture

Using the Instrument I/O Assistant
Using VISA

Using Instrument Drivers

TommON®

© National Instruments Corporation 9-1 LabVIEW Introduction Course Manual

Lesson 9

Instrument Control

A. Using Instrument Control

B. Using GPIB

When you use a PC to automate a test system, you are not limited to the type
of instrument you can control. You can mix and match instruments from
various categories. The most common categories of instrument interfaces
are GPIB, serial, modular instruments, and PXI modular instruments.
Additional types of instruments include image acquisition, motion control,
USB, Ethernet, parallel port, NI-CAN, and other devices.

When you use PCs to control instruments, you need to understand properties
of the instrument, such as the communication protocols to use. Refer to the
instrument documentation for information about the properties of an
instrument.

The ANSI/IEEE Standard 488.1-1987, also known as General Purpose
Interface Bus (GPIB), describes a standard interface for communication
between instruments and controllers from various vendors. GPIB, or
General Purpose Interface Bus, instruments offer test and manufacturing
engineers the widest selection of vendors and instruments for
general-purpose to specialized vertical market test applications. GPIB
instruments are often used as stand-alone benchtop instruments where
measurements are taken by hand. You can automate these measurements by
using a PC to control the GPIB instruments.

IEEE 488.1 contains information about electrical, mechanical, and

functional specifications. The ANSI/IEEE Standard 488.2-1992 extends
IEEE 488.1 by defining a bus communication protocol, a common set of
data codes and formats, and a generic set of common device commands.

GPIB is a digital, 8-bit parallel communication interface with data transfer
rates of 1 Mbyte/s and higher, using a three-wire handshake. The bus
supports one system controller, usually a computer, and up to 14 additional
instruments. The GPIB protocol categorizes devices as controllers, talkers,
or listeners to determine which device has active control of the bus. Each
device has a unique GPIB primary address between 0 and 30. The Controller
defines the communication links, responds to devices that request service,
sends GPIB commands, and passes/receives control of the bus. Controllers
instruct Talkers to talk and to place data on the GPIB. You can address only
one device at a time to talk. The Controller addresses the Listener to listen
and to read data from the GPIB. You can address several devices to listen.

LabVIEW Introduction Course Manual 9-2 ni.com

Lesson 9 Instrument Control

Data Transfer Termination

Termination informs listeners that all data has been transferred. You can
terminate a GPIB data transfer in the following three ways:

* The GPIB includes an End Or Identify (EOI) hardware line that can be
asserted with the last data byte. This is the preferred method.

* Place a specific end-of-string (EOS) character at the end of the data
string itself. Some instruments use this method instead of or in addition
to the EOI line assertion.

* The listener counts the bytes transferred by handshaking and stops
reading when the listener reaches a byte count limit. This method is
often a default termination method because the transfer stops on the
logical OR of EOI, EOS (if used) in conjunction with the byte count.
Thus, you typically set the byte count to equal or exceed the expected
number of bytes to be read.

Data Transfer Rate

To achieve the high data transfer rate that the GPIB was designed for, you
must limit the number of devices on the bus and the physical distance
between devices.

You can obtain faster data rates with HS488 devices and controllers. HS488
is an extension to GPIB that most NI controllers support.

@ Note Refer to the National Instruments GPIB support Web site at ni . com/support/
gpibsupp.htm for more information about GPIB.

C. Using Serial Port Communication

Serial communication transmits data between a computer and a peripheral
device, such as a programmable instrument or another computer. Serial
communication uses a transmitter to send data one bit at a time over a single
communication line to a receiver. Use this method when data transfer rates
are low or you must transfer data over long distances. Most computers have
one or more serial ports, so you do not need any extra hardware other than
a cable to connect the instrument to the computer or to connect two
computers to each other.

© National Instruments Corporation 9-3 LabVIEW Introduction Course Manual

Lesson 9

Instrument Control

1 RS-232 Instrument 2 RS-232 Cable 3 Serial Port

Figure 9-1. Serial Instrument Example

You must specify four parameters for serial communication: the baud rate
of the transmission, the number of data bits that encode a character, the
sense of the optional parity bit, and the number of stop bits. A character
frame packages each transmitted character as a single start bit followed by
the data bits.

Baud rate is a measure of how fast data moves between instruments that use
serial communication.

Data bits are transmitted upside down and backwards, which means that
inverted logic is used and the order of transmission is from least significant
bit (LSB) to most significant bit (MSB). To interpret the data bits in a
character frame, you must read from right to left and read 1 for negative
voltage and O for positive voltage.

An optional parity bit follows the data bits in the character frame. The parity
bit, if present, also follows inverted logic. This bit is included as a means of
error checking. You specify ahead of time for the parity of the transmission
to be even or odd. If you choose for the parity to be odd, the parity bit is set
in such a way so the number of 1s add up to make an odd number among the
data bits and the parity bit.

The last part of a character frame consists of 1, 1.5, or 2 stop bits that are
always represented by a negative voltage. If no further characters are
transmitted, the line stays in the negative (MARK) condition. The
transmission of the next character frame, if any, begins with a start bit of
positive (SPACE) voltage.

LabVIEW Introduction Course Manual 9-4 ni.com

Lesson 9 Instrument Control

The following figure shows a typical character frame encoding the letter m.

Space
Mark

Idle

Start Data Parity Stop Idle
Bit Bits Bit Bits

—

Bit Time

[
Character Frame

Data Transfer Rate

Figure 9-2. Character Frame for the letter m

RS-232 uses only two voltage states, called MARK and SPACE. In such a
two-state coding scheme, the baud rate is identical to the maximum number
of bits of information, including control bits, that are transmitted per second.

MARK is a negative voltage, and SPACE is positive. The previous
illustration shows how the idealized signal looks on an oscilloscope.
The following is the truth table for RS-232:

Signal >+3 V=0
Signal < -3V =1

The output signal level usually swings between +12 V and —12 V. The dead
area between +3 V and -3 V is designed to absorb line noise.

A start bit signals the beginning of each character frame. It is a transition
from negative (MARK) to positive (SPACE) voltage. Its duration in seconds
is the reciprocal of the baud rate. If the instrument is transmitting at

9,600 baud, the duration of the start bit and each subsequent bit is about
0.104 ms. The entire character frame of eleven bits would be transmitted
in about 1.146 ms.

Interpreting the data bits for the transmission yields 1101101 (binary) or 6D
(hex). An ASCII conversion table shows that this is the letter m.

This transmission uses odd parity. There are five ones among the data bits,
already an odd number, so the parity bit is set to 0.

You can calculate the maximum transmission rate in characters per second
for a given communication setting by dividing the baud rate by the bits per
character frame.

© National Instruments Corporation 9-5 LabVIEW Introduction Course Manual

Lesson 9

Instrument Control

In the previous example, there are a total of eleven bits per character frame.
If the transmission rate is set at 9,600 baud, you get 9,600/11 = 872
characters per second. Notice that this is the maximum character
transmission rate. The hardware on one end or the other of the serial link
might not be able to reach these rates, for various reasons.

Serial Port Standards

The following examples are the most common recommended standards of
serial port communication:

* RS-232 (ANSI/EIA-232 Standard) is used for many purposes, such as
connecting a mouse, printer, or modem. It also is used with industrial
instrumentation. Because of improvements in line drivers and cables,
applications often increase the performance of RS-232 beyond the
distance and speed in the standards list. RS-232 is limited to
point-to-point connections between PC serial ports and devices.

* RS-422 (AIA RS-422A Standard) uses a differential electrical signal as
opposed to the unbalanced (single-ended) signals referenced to ground
with RS-232. Differential transmission, which uses two lines each to
transmit and receive signals, results in greater noise immunity and
longer transmission distances as compared to RS-232.

* RS-485 (EIA-485 Standard) is a variation of RS-422 that allows you to
connect up to 32 devices to a single port and define the necessary
electrical characteristics to ensure adequate signal voltages under
maximum load. With this enhanced multidrop capability, you can create
networks of devices connected to a single RS-485 serial port. The noise
immunity and multidrop capability make RS-485 an attractive choice in
industrial applications that require many distributed devices networked
to a PC or other controller for data collection and other operations.

D. Using Other Interfaces

There are devices made to communicate with serial or GPIB instruments
through the Ethernet, USB, or IEEE 1394 (FireWire®) ports, which
bypasses the need for a serial port or GPIB device on your computer. When
using these devices, program them just as you would if they were using the
serial port or a GPIB device.

USB and ethernet interfaces transform USB ports or ethernet ports into
asynchronous serial ports for communication with serial instruments. You
can install and use these interfaces as standard serial ports from your
existing applications.

USB, ethernet, and IEEE 1394 controllers transform any computer with
these ports into a full-function, Plug and Play, IEEE-488.2 Controller that
can control up to 14 programmable GPIB instruments.

LabVIEW Introduction Course Manual 9-6 ni.com

Lesson 9 Instrument Control

E. Software Architecture

The software architecture for instrument control using LabVIEW is similar
to the architecture for DAQ. Instrument interfaces such as GPIB include a
set of drivers. Use MAX to configure the interface. VISA, Virtual
Instrument Software Architecture, is a common API to communicate with
the interface drivers and is the preferred method used when programming
for instrument control in LabVIEW, because VISA abstracts the type of
interface used. Many LabVIEW VIs used for instrument control use the
VISA API. For example, the Instrument I/O Assistant is a LabVIEW
Express VI that can use VISA to communicate with message-based
instruments and convert the response from raw data to an ASCII
representation. Use the Instrument I/O Assistant when an instrument driver
is not available. In LabVIEW, an instrument driver is a set of VIs specially
written to communicate with an instrument.

@ Note GPIB drivers are available on the LabVIEW Installer CD-ROM and most GPIB
drivers are available for download at ni . com/support/gpib/versions.htm.
Always install the newest version of these drivers unless otherwise instructed in the
release notes.

MAX (Windows; GPIB)

Use MAX to configure and test the GPIB interface. MAX interacts with the
various diagnostic and configuration tools installed with the driver and also
with the Windows Registry and Device Manager. The driver-level software
is in the form of a DLL and contains all the functions that directly
communicate with the GPIB interface. The Instrument I/O VIs and
functions directly call the driver software.

Open MAX by double-clicking the icon on the desktop or by selecting
Tools»Measurement & Automation Explorer in LabVIEW. The
following example shows a GPIB interface in MAX after clicking the Scan
For Instruments button on the toolbar.

© National Instruments Corporation 9-7 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

LAGPIBO (PCI-GPIB) - Measurement & Automation Explorer

BE[X]

File Edit Wiew Toaols Help

Configuration 2| EH'Properties
= @ My Sywskem
¥ Data Meighborhood hame

!%Scan Faor Instruments

S NI Spy €L GRIE Analyzer | ¢% Show Help

- Devices and Interfaces

- GPIBO (PCI-GPIE)
Instrumentd

+ MI-CACims Devices
+ y Ports (Serial & Parallel)
+-PX1 PRI Swstem (Unidentifizd)
+ Traditional NI-DACQ (Legacy’) Devices

+ ﬁ Historical Diata

+- A scales

+ Software

+ IVI Drivers

+ @ Remote Systems

Instrument0

B GPIG Inkerface Number

Primary Address =2 Mational Instruments GPIEB a...

W Attributes

Figure 9-3. GPIB Interface in Measurement and Automation Explorer

Configure the objects listed in MAX by right-clicking each item and
selecting an option from the shortcut menu. You learn to use MAX to
configure and communicate with a GPIB instrument in the next exercise.

LabVIEW Introduction Course Manual

9-8

ni.com

Exercise 9-1

Lesson 9 Instrument Control

Concept: GPIB Configuration with MAX

Goal
Learn to configure the NI Instrument Simulator and use MAX to examine
the GPIB interface settings, detect instruments, and communicate with an
instrument.

Description
1. Configure the NI Instrument Simulator.

U Power off the NI Instrument Simulator.

U Set the left bank of switches on the side of the box to match
Figure 9-4.

U Power on the NI Instrument Simulator.

O Verify that both the Power and Ready LEDs are lit.

OFF

10539354 |

‘ON
@

GPIB Address 2 G Mode

© National Instruments Corporation

Figure 9-4. GPIB Configuration Settings for the NI Instrument Simulator

Launch MAX by either double-clicking the icon on the desktop or by
selecting Tools»Measurement & Automation Explorer in LabVIEW.

View the settings for the GPIB interface.

U Expand the Devices and Interfaces section to display the installed
interfaces. If a GPIB interface is listed, the NI-488.2 software is
correctly loaded on the computer.

U Select the GPIB interface and click the Properties button on the
toolbar to display the Properties dialog box.

Q Examine but do not change the settings for the GPIB interface.

4 Click the OK button to close the dialog box.

9-9 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

4. Communicate with the GPIB instrument.

LabVIEW Introduction Course Manual

Q

Make sure the GPIB interface is still selected in the Devices and
Interfaces section.

Click the Scan for Instruments button on the toolbar.

Expand the GPIB interface that is selected in the Devices and
Interfaces section. One instrument named InstrumentO appears.

Click Instrument(to display information about it in the right pane
of MAX. Notice that the NI Instrument Simulator has a GPIB
primary address (PAD) of 2.

Click the Communicate with Instrument button on the toolbar.
An interactive window appears. You can use it to query, write to,
and read from that instrument.

Enter *IDN? in Send String and click the Query button.

The instrument returns its make and model number in String
Received as shown in Figure 9-5. You can use this window to debug
instrument problems or to verify that specific commands work as
described in the instrument documentation.

¥ MI1-488.2 Communicator E]
GFIBO Inztrument 0 Primary Address 2
Globals Status
. - x| ‘?
Send Shing: DM ihister: 0300
Query] [Wiite] [Read] iber: None END
) ibent: B2
Configured
Sting Received: CHMPL
Mational Inztruments GPIB and Serial Device Simulator Rey
B.11

[Eonfigure EDS] [Show Sample] [E xit]

Figure 9-5. Communication with the GPIB instrument

Enter MEAS : DC? in Send String and click the Query button.
The NI Instrument Simulator returns a simulated voltage
measurement.

Click the Query button again to return a different value.

Click the Exit button when done.

9-10 ni.com

5.

6.

7.

Lesson 9 Instrument Control

Set a VISA alias of devsim for the NI Instrument Simulator so you can
use the alias instead of having to remember the primary address.

U While Instrument0 is selected in MAX, select the VISA
Properties tab.

O Enter devsim in the VISA Alias on My System field. You will
use this alias throughout this lesson.

Select File»Exit to exit MAX.

Click Yes when prompted to save the instrument.

End of Exercise 9-1

© National Instruments Corporation

9-11 LabVIEW Introduction Course Manual

Lesson 9

Instrument Control

F. Using the Instrument /0 Assistant

The Instrument I/O Assistant is a LabVIEW Express VI which you can use
to communicate with message-based instruments and convert the response
from raw data to an ASCII representation. You can communicate with an
instrument that uses a serial, Ethernet, or GPIB interface. Use the
Instrument I/O Assistant when an instrument driver is not available.

The Instrument I/O Assistant organizes instrument communication into
ordered steps. To use Instrument I/O Assistant, you place steps into a
sequence. As you add steps to the sequence, they appear in the Step
Sequence window. Use the view associated with a step to configure
instrument I/O.

To launch the Instrument I/O Assistant, place the Instrument I/O Assistant
Express VIon the block diagram in LabVIEW. The Instrument I/O Assistant
Express VI is available in the Instrument I/O category of the Functions
palette. The Instrument I/O Assistant configuration dialog box appears. If
it does not appear, double-click the Instrument I/O Assistant icon. Complete
the following steps to configure the Instrument I/O Assistant.

1. Select an instrument. Instruments that have been configured in MAX
appear in the Select an instrument pull-down menu.

2. Choose a Code generation type. VISA code generation allows for more
flexibility and modularity than GPIB code generation.

3. Select from the following communication steps using the Add Step
button:

* Query and Parse—Sends a query to the instrument, such as * IDN?
and parses the returned string. This step combines the Write
command and Read and Parse command.

* Write—Sends a command to the instrument.
* Read and Parse—Reads and parses data from the instrument

4. After adding the desired number of steps, click the Run button to test
the sequence of communication that you have configured for the
Express VI.

5. Click the OK button to exit the Instrument I/O Assistant configuration
dialog box.

LabVIEW adds input and output terminals to the Instrument I/O Assistant
Express VI on the block diagram that correspond to the data you receive
from the instrument.

LabVIEW Introduction Course Manual 9-12 ni.com

Lesson 9 Instrument Control

To view the code generated by the Instrument I/O Assistant, right-click the
Instrument I/O Assistant icon and select Open Front Panel from the
shortcut menu. This converts the Express VI to a subVI. Switch to the block
diagram to see the code generated.

@ Note After you convert an Express VI to a subVI, you cannot reconvert the Express VI.

© National Instruments Corporation 9-13 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

Exercise 9-2 Concept: Instrument 1/0 Assistant
Goal

Configure a serial or GPIB instrument and communicate with the
instrument using the Instrument I/O Assistant.

For serial, follow the instructions in part A of this exercise.

For GPIB, follow the instructions in part B of this exercise.

Part A: Serial Description

1. Configure the NI Instrument Simulator to communicate through the
serial port.

U Power off the NI Instrument Simulator.

O Set the left bank of switches on the side of the box to match Figure 9-6.

19095949]

ON

1 S Mode 2 Data Format 3 Baud Rate

Figure 9-6. Serial Configuration Settings for the NI Instrument Simulator

U Make sure the NI Instrument Simulator is connected to a serial port
on the computer with a serial cable.

Q Make a note of the port number.
Q Power on the NI Instrument Simulator.

O Verify that the Power, Ready, and Listen LEDs are lit to indicate that
the device is in serial communication mode.

LabVIEW Introduction Course Manual 9-14 ni.com

Lesson 9 Instrument Control

You build a block diagram similar to the one in Figure 9-7 in the following
steps.

Instrument I -
i String Length

errar out rJ“El
Skring Length ¥ Skring

String ¥ Fibc]
0 Errar in

Figure 9-7. 1I0ASerial VI Block Diagram
2. Open a blank VL

3. Save the VI as Serial IIOA Read.vi inthe C:\Exercises\
LabVIEW Basics I\Instrument IO Assistant directory.

4. Open the block diagram.

5. Configure the Instrument I/O Express VI to communicate with the
NI Instrument Simulator.

U Place the Instrument I/O Express VI on the block diagram. The
Instrument I/0 Assistant dialog box appears.

© National Instruments Corporation 9-15 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

Instrument 1/ Assistant
+ o L2)
Add Step Undo Fedo | Run Show Help
dd d d h |

e ER

v@ Selectnstrument

o Run this step |

Auko parse | Parsing help |

I Clear parsing |

EE SR £1 £SO 049 S5 7

Byte index Binary representation
00000000000 ; |4E—&1 T4 &9

A5CI representation

f? hrite
00000000013 : |7

L)

C

| e s M)
E— T

B L B~ B Y
T T T

00000000026 @ | &L

c

£

o El Tl |
T

ro

oC 4o
T T

g Read and Parse 00000000039: |

A
C
=

T
Lo
il
1=

Character Count

(61

(]

R0 end of data |

00000000052 : |+ = =+ o—i + 0L
| [» ® Sting Length |
Bin and A5CII vl Byte order| Big Endian [tatarola) vl
d” Read and Parse —Selected Token Settings
| [» ® Sting | Toke; name Yalue
Strirn N
E— National
Data Type | Scaling|
Instruments GPIB
Type .
String . and Serlal

Device Simulator
Rev B.1

Figure 9-8. Serial Configuration of the Instrument I/0 Assistant

Q From the Select an instrument pull-down menu, choose COM1
(or COM2 depending on the connection port of the NI Instrument

Simulator).

Click Write.

I I I N N

Click Read and Parse.

Click the Add Step button.

Click the Add Step button.

In the command field, enter *IDN?.

From the Termination Character pull-down menu, choose \n.

@ Note The Instrument Simulator returns the byte size of the response, the termination
character, the response, then another termination character. Therefore, after *IDN? is

LabVIEW Introduction Course Manual

ni.com

Lesson 9 Instrument Control

sent to the instrument, the response must be read twice; once to retrieve the size of the
response, and once to retrieve the response.

6.

7.

Q

Q

Q

Click the Add Step button.
Click Read and Parse again.

Click the Run button (not the Run this step button). The Run button
runs the entire sequence.

Return to the first Read and Parse step.

Click the Auto parse button. The value returned is the size in bytes
of the query response.

Rename Token to String Length in the Token name text box.
Select the second Read and Parse step.

Click the Auto parse button. The value returned is the identification
string of the NI Instrument Simulator.

Rename Token to String in the Token name text box. The
configuration window should be similar to Figure 9-8.

Click OK to return to the block diagram.

Create an indicator for the response from the instrument.

Q

Q

Right-click the String terminal.

Select Create»Indicator from the shortcut menu.

Create an indicator for the response length from the instrument.

Q

Q

Right-click the String Length terminal.

Select Create»Indicator from the shortcut menu.

@ Tip To allow LabVIEW to handle errors automatically, do not connect a Simple Error
Handler VI to error out.

© National Instruments Corporation

9-17 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

8. Display the front panel window. It should be similar to Figure 9-9.

String Length
62
Skring

Makional Inskruments
GPIE and Serial Device
Simulator Rew B.1

Figure 9-9. [I0ASerial VI Front Panel Window
9. Save the VL.
10. Run the VI.
11. Examine the code generated by the I/O Assistant.
O Right-click the I/O Assistant and select Open Front Panel.

O Click the Convert button when asked if you want to convert to a
subVL.

O View the code generated by the I/O Assistant. Where is the
command *IDN? written to the Instrument Simulator?

O Select File»Exit to exit the subVI. Do not save changes.

12. Close the VI when finished.

Part B: GPIB Description

1. Configure the NI Instrument Simulator to communicate through the
GPIB interface.

U Power off the NI Instrument Simulator.

O Set the left bank of switches on the side of the box to match Figure 9-10.

OFF

10595344 |

‘ON
©

1 GPIB Address 2 G Mode

Figure 9-10. GPIB Configuration Settings for the NI Instrument Simulator

LabVIEW Introduction Course Manual 9-18 ni.com

Lesson 9 Instrument Control
Q Make sure the NI Instrument Simulator is connected to the GPIB
device.
Q Power on the NI Instrument Simulator.
O Verify that both the Power and Ready LEDs are lit.
2. Open a blank VL.

3. Save the VI as GPIB IIOA Read.vi inthe C:\Exercises\
LabVIEW Basics I\Instrument IO Assistant directory.

You create a block diagram similar to the one in Figure 9-11 in the following
steps.

| . |
" ¥

Instrument I
Assiskant Woltage
r ,

IC Skring H
v_I—ID Skring
Fab

Figure 9-11. [I0AGPIB VI Block Diagram

4. Open the block diagram.

5. Configure the Instrument I/O Express VI to communicate with the
NI Instrument Simulator.

O Place the Instrument I/O Express VI on the block diagram. The
Instrument I/O Assistant dialog box appears.

© National Instruments Corporation 9-19 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

Instrument /O Assistant
+ - » ¥
Add Step Undo Run Show Help

Idle [&
¢ Run this step
v®l Select Instrument Enter & command [click Bun to send command) Temination character
measdc? -
+
ﬁ? Query and Farse
d’rf Auto parse | Parsing help | ¥ Clear parsing
b @ |D Sting
Bute index Binary reprezentation ASCI reprezentation
ﬁ? l]l]l]l]l]l]l]l]l]l]l]:| on O
ﬁ"__'(. Query and Far... — —
|’ ® Voltage Bin and ASCII [l Eyte order| Big Endian [Motorola]_\f_ Separator(g] | .
—5Selected Token Settings
Taken name Walue
Yoltage
8.282000e-001
Data Type | Scaling
Tupe
Mumber v | Arrap
Character Count
5 e
A 70 end of data
[akK] [Cancel

LabVIEW Introduction Course Manual

Figure 9-12. GPIB Configuration of the Instrument 1/0 Assistant

Select devsim from the Select an instrument pull-down menu.

Select VISA Code Generation from the Code generation type

pull-down menu.

Click the Add Step button.

Click Query and Parse to write and read from the Instrument

Simulator.

Enter *IDN? as the command.

Click the Run this step button. If no error warning appears in the
lower half of the dialog box, this step has successfully completed.

To parse the data received, click the Auto parse button.

Rename Token by typing ID String in the Token name text box.

Click the Add Step button.

9-20

ni.com

Lesson 9 Instrument Control

Click Query and Parse.
Enter MEAS : DC? as the command.

Click the Run this step button.

U U U 0

To parse the data received, click the Auto parse button. The data
returned is a random numeric value.

O Rename Token by typing Voltage in the Token name text box.
The configuration window should be similar to Figure 9-12.

U Click the OK button to exit the I/O Assistant and return to the block
diagram.

6. Create an indicator for the ID String.

O Right-click the ID String terminal and select Create»Indicator
from the shortcut menu.

7. Create an indicator for the voltage.

O Right-click the Voltage terminal and select Create»Indicator from
the shortcut menu.

@ Tip To allow LabVIEW to handle errors automatically, do not connect a Simple Error
Handler VI to error out.

8. Display the front panel window. The front panel window should be
similar in Figure 9-13.

ID Skring

Mational Instruments
5PIE and Serial Device
Simulator Rewv 6.1

volkage

|4.84

Figure 9-13. 1I0AGPIB VI Front Panel Window
9. Save the VI.

10. Run the VI. Resize the string indicator if necessary.

© National Instruments Corporation 9-21 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

11. Examine the code generated by the I/O Assistant.
O Right-click the I/O Assistant and select Open Front Panel.
U Click the Convert button when prompted to convert to a subVI.

O View the code generated by the I/O Assistant. Where is the
command * IDN? written to the Instrument Simulator? Where is the
voltage being read?

Q Select File»Exit to exit the subVI. Do not save changes.

12. Close the VI when finished.

End of Exercise 9-2

LabVIEW Introduction Course Manual 9-22 ni.com

Lesson 9 Instrument Control

G. Using VISA

Virtual Instrument Software Architecture (VISA) is the lower layer of
functions in the LabVIEW instrument driver VIs that communicates with
the driver software. VISA by itself does not provide instrumentation
programming capability. VISA is a high-level API that calls low-level
drivers. VISA can control VXI, GPIB, serial, or computer-based
instruments and makes the appropriate driver calls depending on the type of
instrument used. When debugging VISA problems, remember that an
apparent VISA problem could be an installation problem with one of the
drivers that VISA calls.

In LabVIEW, VISA is a single library of functions you use to communicate
with GPIB, serial, VXI, and computer-based instruments. You do not need
to use separate I/O palettes to program an instrument. For example, some
instruments give you a choice for the type of interface. If the LabVIEW
instrument driver were written with functions on the Functions»All
Functions»Instrument I/O»GPIB palette, those instrument driver VIs
would not work for the instrument with the serial port interface.

VISA solves this problem by providing a single set of functions that work
for any type of interface. Therefore, many LabVIEW instrument drivers use
VISA as the I/O language.

VISA Programming Terminology
The following terminology is similar to that used for instrument driver VIs:

* Resource—Any instrument in the system, including serial and
parallel ports.

* Session—You must open a VISA session to a resource to communicate
with it, similar to a communication channel. When you open a session
to a resource, LabVIEW returns a VISA session number, which is a
unique refnum to that instrument. You must use the session number in
all subsequent VISA functions.

* Instrument Descriptor—Exact name of a resource. The descriptor
specifies the interface type (GPIB, VXI, ASRL), the address of the
device (logical address or primary address), and the VISA session
type (INSTR or Event).

The instrument descriptor is similar to a telephone number, the resource

is similar to the person with whom you want to speak, and the session is
similar to the telephone line. Each call uses its own line, and crossing these
lines results in an error. Table 9-1 shows the proper syntax for the instrument
descriptor.

© National Instruments Corporation 9-23 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

Table 9-1. Syntax for Various Instrument Interfaces

Interface Syntax

Asynchronous serial

ASRL [device] [: : INSTR]

GPIB

GPIB[device] : : primary address[: : secondary
address] [: : INSTR]

VXl instrument through embedded | vXI [device] : : VXI logical address [: : INSTR]
or MXIbus controller

GPIB-VXI controller GPIB-VXI [device] [: : GPIB-VXI primary

address] : : VXI logical address [: : INSTR]

VISA and Serial

You can use an alias you assign in MAX instead of the instrument
descriptor.

If you choose not to use the Instrument I/O Assistant to automatically
generate code for you, you can still write a VI to communicate with the
instrument. The most commonly used VISA communication functions are
the VISA Write and VISA Read functions. Most instruments require you to
send information in the form of a command or query before you can read
information back from the instrument. Therefore, the VISA Write function
is usually followed by a VISA Read function. The VISA Write and VISA
Read functions work with any type of instrument communication and are
the same whether you are doing GPIB or serial communication. However,
because serial communication requires you to configure extra parameters,
you must start the serial port communication with the VISA Configure
Serial Port VI.

The VISA Configure Serial Port VI initializes the port identified by VISA
resource name to the specified settings. Timeout sets the timeout value for
the serial communication. Baud rate, data bits, parity, and flow control
specify those specific serial port parameters. The error in and error out
clusters maintain the error conditions for this VI.

Figure 9-14 shows how to send the identification query command * IDN? to
the instrument connected to the COM2 serial port. The VISA Configure
Serial Port VI opens communication with COM?2 and sets it to 9,600 baud,
eight data bits, odd parity, one stop bit, and XON/XOFF software
handshaking. Then, the VISA Write function sends the command. The
VIS A Read function reads back up to 200 bytes into the read buffer, and the
Simple Error Handler VI checks the error condition.

LabVIEW Introduction Course Manual 9-24 ni.com

Lesson 9 Instrument Control

Y154 resource name

wirite buffer bryte counk read buffer
i ASRLE:INSTR |v] [Fore] 200 =
baud rate (9600) [3e00}; | ¥ISA Configurs Simple Errar
Serial Port YIS Write WISA Read Y154 Close Handler, vi
data bits (3} |5} =) ":.'bsc.aq: I_:Lsc.a; .,.l%}\
parity {0:none) [#0dd | LodElE) L AE=IE] c %

stop bits (10: 1 bit) |Cui6s
AN R OFF)

Flows control (0:none)

Figure 9-14. Configuring Serial for VISA Example

@ Note The VIs and functions located on the Functions»All Functions»Instrument I/O»
Serial palette are also used for parallel port communication. You specify the VISA
resource name as being one of the LPT ports. For example, you can use MAX to
determine that LPT1 has a VISA resource name of ASRL10: : INSTR.

© National Instruments Corporation 9-25 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

Exercise 9-3 VISA Write & Read VI

Goal
Communicate with a serial or GPIB interface to an instrument using VISA
functions.
Description
This VI uses VISA to communicate with either a serial or a GPIB interface
to an instrument. The VI can send one buffer of data to the instrument, and
read one buffer back. If using GPIB, the user specifies how many bytes to
read from the bus. If using serial, the VI determines how many bytes are
available, and reads them all.
1. Openthe VISA Write & Read.vi inthe C:\Exercises\
LabVIEW Basics I\VISA Write & Read directory.
YISA resource name \Hardware Type
L comz = })lSerial
write buffer read buffer
*IDN N MakionalisInstrumentsisGPIE sand
\sSeriallsDevicelsSimulatorisRevis
B.1in
\byte count
j_.-)IZD ‘alid only For GPIE selection,
Figure 9-15. VISA Write & Read VI Front Panel
2. Open the block diagram of the VI and examine the code. The GPIB
portion is shown in Figure 9-16.
write buffer read buffer
Ja["Gr1E" -
bevte count
VISA resource name
IE 1454
= K
Hardware Type
=

Figure 9-16. GPIB Portion of the VISA Write & Read VI Block Diagram

LabVIEW Introduction Course Manual 9-26 ni.com

Lesson 9 Instrument Control

Follow the instructions in the Test A: Serial section to communicate through
the serial port. Follow the instructions in the Test B: GPIB section to
communicate through the GPIB port.

Test A: Serial

1.

Configure the NI Instrument Simulator to communicate through the

serial port. It may still be set up from the last exercise.

U Power off the NI Instrument Simulator.

U Set the left bank of switches on the side of the box to match

Figure 9-17.

19099928/ |

ON

1

S Mode 2 Data Format 3 Baud Rate

© National Instruments Corporation

Figure 9-17. Serial Configuration Settings for the NI Instrument Simulator

U Make sure the NI Instrument Simulator is connected to a serial port.
Q Power on the NI Instrument Simulator.

O Verify that the Power, Ready, and Listen LEDs are lit.

Enter values into the controls in preparation for communicating with the
instrument. You do not need to enter a value in the byte count, as this
control is only used for GPIB communication.

O Select the serial port in the VISA resource name control.
O Select Serial from the Hardware Type enumerated control.
Q Enter *IDN? in the write buffer.

Run the VI.

The top of the instrument simulator lists other commands that are
recognized by this instrument. Try other commands in this VI.

Close the VI when finished.

9-27 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

Test B: GPIB
1. Configure the NI Instrument Simulator to communicate through the
GPIB interface.

U Power off the NI Instrument Simulator.

O Set the left bank of switches on the side of the box to match Figure 9-18.

OFF

20559544 |
: &

1 GPIB Address 2 G Mode
Set the GPIB Address GPIB Mode

Figure 9-18. GPIB Configuration Settings for the NI Instrument Simulator

U Make sure the NI Instrument Simulator is connected to the GPIB
device.

U Power on the NI Instrument Simulator.
O Verify that both the Power and Ready LEDs are lit.

2. Enter values into the controls in preparation for communicating with the
instrument.

O Select devsim in the VISA resource name control.
O Select GPIB from the Hardware Type enumerated control.

U Enter *IDN? in the write buffer.

@ Note Press the <Enter> key after entering * IDN? to ensure that the end of line character
\n appears in the string control.

3. Run the VI

4. The top of the instrument simulator lists other commands that are
recognized by this instrument. Try other commands in this VI.

5. Close the VI when finished.

End of Exercise 9-3

LabVIEW Introduction Course Manual 9-28 ni.com

Lesson 9 Instrument Control

H. Using Instrument Drivers

Imagine the following scenario. You wrote a LabVIEW VI that
communicates with a specific oscilloscope in your lab. Unfortunately, the
oscilloscope no longer works, and you must replace it. However, this
particular oscilloscope is no longer made. You found a different brand of
oscilloscope that you want to purchase, but your VI no longer works with
the new oscilloscope. You must rewrite your VI.

When you use an instrument driver, the driver contains the code specific to
the instrument. Therefore, if you change instruments, you must replace only
the instrument driver VIs with the instrument driver VIs for the new
instrument, which greatly reduces your redevelopment time. Instrument
drivers help make test applications easier to maintain because the drivers
contain all the I/O for an instrument in one library, separate from other code.
When you upgrade hardware, upgrading the application is easier because
the instrument driver contains all the code specific to that instrument.

Understanding Instrument Drivers

A LabVIEW Plug and Play instrument driver is a set of VIs that control a
programmable instrument. Each VI corresponds to an instrument operation,
such as configuring, triggering, and reading measurements from the
instrument. Instrument drivers help users get started using instruments from
a PC and saves them development time and cost because users do not need
to learn the programming protocol for each instrument. With open-source,
well documented instrument drivers, end users can customize their
operation for better performance. A modular design makes the driver easier
to customize.

Locating Instrument Drivers

You can locate most LabVIEW Plug and Play instrument driver in the
Instrument Driver Finder. You can access the Instrument Driver Finder
within LabVIEW by selecting Tools»Instrumentation»Find Instrument
Drivers or Help»Find Instrument Drivers. The Instrument Driver Finder
connects you with ni . com to find instrument drivers. When you install an
instrument driver, an example program using the driver is added to the

NI Example Finder.

Example Instrument Driver VI

The block diagram in Figure 9-19 initializes the Agilent 34401 digital
multimeter (DMM), uses a configuration VI to choose the resolution and
range, select the function, and enable or disable auto range, uses a data VIs
to read a single measurement, closes the instrument, and checks the error
status. Every application that uses an instrument driver has a similar
sequence of events: Initialize, Configure, Data, and Close.

© National Instruments Corporation 9-29 LabVIEW Introduction Course Manual

Lesson 9

Instrument Control

Manual Resolution (1: 5.5 Digits)l 1323
Function (0: DC Yoltage) @

Serial Configuration |[Sus K,

VISA resource name

Enable Auto Range (True) I TF E

Manual Range (1.0) *

] Measurernent

In ialize. vi Cdnfigure Measurement.vi Read Single Point.vi Close.vi

s _
:‘:‘Eﬂls (5’(‘0’4 CLOSE
Configure Measurement Resd Measurement

Figure 9-19. Agilent 34401 DMM Instrument Driver Example

This is an example program that is available in the NI Example Finder when
you install the LabVIEW Plug and Play instrument driver for the Agilent
34401 DMM.

Understanding Instrument Drivers

Many programmable instruments have a large number of functions and
modes. With this complexity, it is necessary to provide a consistent design
model that aids both instrument driver developers as well as end users who
develop instrument control applications. The LabVIEW Plug and Play
instrument driver model contains both external structure and internal
structure guidelines. The external structure shows how the instrument driver
interfaces with the user and to other software components in the system. The
internal structure shows the internal organization of the instrument driver
software module.

For the external structure of the instrument driver, the user interacts with the
instrument driver using an API or an interactive interface. Usually, the
interactive interface is used for testing or for end-users. The API is accessed
through LabVIEW. The instrument driver communicates with the
instrument using VISA.

Internally, the VIs in an instrument driver are organized into six categories.
These categories are summarized in the following table.

Category Description

Initialize The initialize VI establishes communication with
the instrument and is the first instrument driver VI
called.

Configure Configure Vs are software routines that configure
the instrument to perform specific operations.
After calling these Vs, the instrument is ready to
take measurements or stimulate a system.

LabVIEW Introduction Course Manual 9-30 ni.com

Lesson 9 Instrument Control

Category Description

Action/Status Action/Status VIs command the instrument to
carry out an action (i.e. arming a trigger) or obtain
the current status of the instrument or pending
operations.

Data The data VIs transfer data to or from the
instrument.

Utility Utility VIs perform a variety of auxiliary
operations, such as reset and self-test.

Close The close VI terminates the software connection to
the instrument. This is the last instrument driver VI
called.

© National Instruments Corporation 9-31 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

Exercise 9-4 Concept: NI Devsim VI
Goal

Install an instrument driver and explore the example programs that
accompany the instrument driver.

Description

Install the instrument driver for the NI Instrument Simulator. After
installation, explore the VIs that the instrument driver provides and the
example programs that are added to the NI Example Finder.

Install Instrument Driver
1. Exit LabVIEW.

2. Navigate to the C: \Exercises\LabVIEW Basics I\Instrument
Driver directory. This folder contains the LabVIEW Plug and Play
instrument driver for the Instrument Simulator.

3. Double-click the NI Instrument Simulator Zip folder to extract the
contents.

4. Extract to the C: \Program Files\National Instruments\
LabVIEW 8.0\instr.lib directory.

Explore Instrument Driver
5. Start LabVIEW.

6. Open a blank VL
7. Switch to the block diagram.

8. Navigate to the Instrument I/O»Instrument Drivers»NI Instrument
Simulator category of the Functions palette.

9. Explore the palette using the Context Help window to familiarize
yourself with the functionality.

Use Example Programs
10. Select Help»Find Examples to start the NI Example Finder.

11. Confirm that you are browsing according to task.

12. Navigate to Hardware Input and OQutput»Instrument Drivers»
LabVIEW Plug and Play in the task structure.

LabVIEW Introduction Course Manual 9-32 ni.com

Lesson 9 Instrument Control

13. Double-click NI Instrument Simulator Read DMM Measurement.vi
to open the example program. This VI reads a single measurement from
the Instrument Simulator.

14. Prepare the Instrument Simulator. This VI can communicate with the
instrument through serial or GPIB.

U To communicate through serial, set the Instrument Simulator
switches as shown in Figure 9-20.

190595949]

ON

1 S Mode 2 Data Format 3 Baud Rate
Figure 9-20. Serial Configuration Settings for the NI Instrument Simulator

Q To communicate through GPIB, set the Instrument Simulator
switches as shown in Figure 9-21.

OFF

3999950/]

1 GPIB Address 2 G Mode
Set the GPIB Address GPIB Mode

Figure 9-21. GPIB Configuration Settings for the NI Instrument Simulator

15. Select the communication type on the VISA Resource Name control.

Q If you are using serial, select the resource (COM1 or COM?2) that the
serial cable is connected to.

Q If you are using GPIB, select the devsim VISA alias.
16. Run the VL.

17. Explore the block diagram of the VI. Do not save changes.

© National Instruments Corporation 9-33 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

18. Close the VI.
19. Return to the NI Example Finder.

20. Double-click NI Instrument Simulator Read Oscilloscope
Waveform.vi to open the next example program. This VI reads a single
waveform from the Instrument Simulator.

21. Select the same VISA Resource Name you selected in step 15.
22. Run the VL

23. Choose a different Waveform Function.

24. Run the VI again.

25. Explore the block diagram of the VI.

26. Close the VI and the NI Example Finder when you are finished. Do not
save changes.

End of Exercise 9-4

LabVIEW Introduction Course Manual 9-34 ni.com

Self Review: Quiz

Lesson 9 Instrument Control

1.

3.

© National Instruments Corporation

Which instrument interface does not use the VISA API?

a.
b.
c.
d.

Serial
DAQ
GPIB
Ethernet

What API does the Instrument I/O Assistant use?

a.
b.
c.
d.

C

Visual Basic
VISA
NI-DAQmx

Which of the following is a way to inform listeners that all data has been
transferred?

Asserting the End or Identify (EOI) line.

Placing a end-of-string (EOS) character at the beginning of the data
being transferred.

Using the VISA Close function.

Turning off the power to the controller.

9-35 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

Self Review: Quiz Answers

1.

2.

3.

© National Instruments Corporation

Which instrument interface does not use the VISA API?

a. Serial

b. DAQ

c. GPIB

d. Ethernet

What API does the Instrument I/O Assistant use?

a. C

b. Visual Basic

c. VISA

d. NIDAQmx

Which of the following is a way to inform listeners that all data has been

transferred?

a. Asserting the End or Identify (EOI) line.

b. Placing a end-of-string (EOS) character at the beginning of the data
being transferred.

c. Using the VISA Close function.

d. Turning off the power to the controller.

9-37 LabVIEW Introduction Course Manual

Lesson 9 Instrument Control

Notes

LabVIEW Introduction Course Manual 9-38 ni.com

Common Design Techniques and
Patterns

The first step in developing a LabVIEW project is to explore the
architectures that exist within LabVIEW. Architectures are essential for
creating a successful software design. The most common architectures are
usually grouped into design patterns.

As a design pattern gains acceptance, it becomes easier to recognize when
a design pattern has been used. This recognition helps you and other
developers read and make changes to VIs that are based on design patterns.

There are many design patterns for LabVIEW. Most applications use at least
one design pattern. In this course, you explore the State Machine design
pattern. Learn more about design patterns in LabVIEW Basics I1.

Topics

Using Sequential Programming
Using State Programming

State Machines

oS awp»

Using Parallelism

© National Instruments Corporation 10-1 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

A. Using Sequential Programming

In Lesson 1, Problem Solving, you designed a flowchart for a Temperature
Weather Station. The Temperature Weather Station is a set of steps:

1. Read the temperature
2. Test the temperature for limits and display warnings

3. Graph and log the temperature

After you reach the end of the sequence of events, you check to see if the
stop button has been clicked, and, if not, the sequence repeats.

Many of the VIs you write in LabVIEW accomplish sequential tasks. How
you program these sequential task can be very different. Consider the block
diagram in Figure 10-1. In this block diagram, a voltage signal is acquired,
adialog is presented to the user asking them to turn on the power, the voltage
signal is acquired again, and the user is asked to turn off the power.

However, in this example, there is nothing in the block diagram to force the
execution order of these events. Any one of these events could happen first.

Before Applying Power After Applying Power
s 3
§ i Turn on power ; : Turn off power
ko circuit now. ([» bo circuit now. |-
DaQ Assistant [Done 2 DAQ Assistant eore =
data b= data !
errar ouk L4
[Read circuit valtage. | [Tell user to turn on power. | [Read circuit voltage again. | [Tell user ta kurn of f power. |

Figure 10-1. Unsequenced Tasks

In LabVIEW, you can complete sequential tasks by placing each task in a
separate subVI, and wiring the subVIs in order using the error cluster.
However, in this example, only two of the tasks have a error cluster. Using
the error clusters, you can force the execution order of the two DAQ
Assistants, but not the One Button Dialog Functions, as shown in

Figure 10-2.

LabVIEW Introduction Course Manual 10-2 ni.com

Lesson 10 Common Design Techniques and Patterns

Before Applying Power

After Applyving Power

L3 L3
; H Turn on power * H Turn_oFF_pnwer _
ko dircuit now. {-[L1=] v o drcuit now. |12
DAG Assistant IDone - ™ Da0 Assistant? A IDDHB]
data [data [i
error ouk errar in
[Tell user ko burn on power | [Read circuit voltage again. | [Tell user to turn off power., |

Figure 10-2. Partially Sequenced Tasks

Use a Sequence structure to force the order of operations of block diagram
objects. A Sequence structure is simply a structure with frames, where each
frame executes in order; the second frame cannot begin execution until
everything in the first frame has completed execution. Figure 10-3 shows an
example of this VI using a Sequence structure to force execution order.

1000 0000000000000 00

Before Applying Power After Applving Power

i L3
i H Turn on power s W Turn.DFF_prer _
to circuit nave. f-[[1= e | ko circuit now. ([[1=
DAY estant (ST g DAQ Assistantz fpone 2
data b s nll
arrar auk H
Read circuit volkage, [Tell user ko burn on power | [Read circuit voltage again. | [Tell user to turn off power. |

1000 0000000000000 00

Figure 10-3. Tasks Sequenced with a Sequence Structure

To take advantage of the inherent parallelism in LabVIEW, avoid overusing
Sequence structures. Sequence structures guarantee the order of execution,
but prohibit parallel operations. Another negative to using Sequence
structures is that you cannot stop the execution part way through the

sequence. A good way to use Sequence structures for this example is shown
in Figure 10-4.

© National Instruments Corporation 10-3 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

Before Applying Power After Applving Power

1000000000000

Turn off power
ko circuit niow,

» »
» H » L
- Turn on power

o circuit now,

DAQ Assiskant o 5 DA Assistant?
ane f
data e I— data [
efrar ouk * Errar in
N sEeNsEs NN R error oub e
Read circuit volbage. [Tell user to turn on power., | [Read circuit voltage again. | [Tell user to turn off power. |

Figure 10-4. Tasks Sequenced with Sequence Structures and an Error Cluster

The best way to write this VI is to enclose the One Button Dialog functions
in a Case structure, wiring the error cluster to the case selector.

Before Applving Power After Applying Power

]j Mo Errar "t
Turn off power

3 ko circuit now, mmg'

‘r_l Mo Errar 't

3
3 L
Turn on power

ko circuit o, -mg_g_ j
DA Assiskant IDDHB ™ DA Assiskant? H IDDI‘IE - T
data e data Hed
efrar ouk 4 Etrar in ?
errar ouk
[Tell user to turn on power. | [Read circuit voltage again. | [Tell user ko turn off power, |

Figure 10-5. Tasks Sequenced with an Error Cluster and Case Structures

LabVIEW Introduction Course Manual 10-4 ni.com

Lesson 10 Common Design Techniques and Patterns

B. Using State Programming

Although a Sequence structure and sequentially wired subVIs both
accomplish the task, sometimes more is necessary:

U What if you must change the order of the sequence?

O What if you must repeat one item in the sequence more often than the
other items?

Q What if some items in the sequence execute only when certain
conditions are met?

Q What if you must stop the program immediately, rather than waiting
until the end of the sequence?

Although your program may not have any of the above requirements, there
is always the possibility that the program must be modified in the future. For
this reason, a state programming architecture is a good choice, even if a
sequential programming structure would be sufficient.

© National Instruments Corporation 10-5 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

C. State Machines

The state machine design pattern is a common and very useful design
pattern for LabVIEW. You can use the state machine design pattern to
implement any algorithm that can be explicitly described by a state diagram
or flowchart. A state machine usually implements a moderately complex
decision-making algorithm, such as a diagnostic routine or a process
monitor.

A state machine, which is more precisely defined as a finite state machine,
consists of a set of states and a transition function that maps to the next state.
Finite state machines have many variations. The two most common finite
state machines are the Mealy machine and the Moore machine. A Mealy
machine performs an action for each transition. A Moore machine performs
a specific action for each state in the state transition diagram. The state
machine design pattern template in LabVIEW implements any algorithm
described by a Moore machine.

Applying State Machines

Use state machines in applications where distinguishable states exist. Each
state can lead to one or multiple states or end the process flow. A state
machine relies on user input or in-state calculation to determine which state
to go to next. Many applications require an initialization state, followed by
a default state, where many different actions can be performed. The actions
performed can depend on previous and current inputs and states. A
shutdown state commonly performs clean up actions.

State machines are commonly used to create user interfaces. In a user
interface, different user actions send the user interface into different
processing segments. Each processing segment acts as a state in the state
machine. Each segments can lead to another segment for further processing
or wait for another user action. In this example, the state machine constantly
monitors the user for the next action to take.

Process testing is another common application of the state machine design
pattern. For a process test, a state represents each segment of the process.
Depending on the result of each state’s test, a different state might be called.
This can happen continually, resulting in an in-depth analysis of the process
you are testing.

The advantage of using a state machine is that after you have created a state
transition diagram, you can build LabVIEW VIs easily.

LabVIEW Introduction Course Manual 10-6 ni.com

Lesson 10 Common Design Techniques and Patterns

State Machine Infrastructure

Translating the state transition diagram into a LabVIEW block diagram
requires the following infrastructure components:

* While Loop—Continually executes the various states

¢ (Case Structure—Contains a case for each state and the code to execute
for each state

* Shift Register—Contains state transition information
* State Functionality Code—Implements the function of the state

* Transition Code—Determines the next state in the sequence

Figure 10-6 shows the basic structure of a state machine implemented in
LabVIEW for a temperature data acquisition system.

St Defadlt Rl

D State Transition

Functionalty Code

Code

1 While Loop 2 Shift Register 3 Case Structure ‘

Figure 10-6. Basic Infrastructure of a LabVIEW State Machine

The flow of the state transition diagram is implemented by the While Loop.
The individual states are represented by cases in the Case structure. A shift
register on the While Loop keeps track of the current state and
communicates the current state to the Case structure input.

Controlling State Machines

The best method for controlling the initialization and transition of state
machines is the enumerated type control. Enumerated type controls are
widely used as case selectors in state machines. However, if the user
attempts to add or delete a state from the enumerated type control, the
remaining wires that are connected to the copies of this enumerated type
control break. This is one of the most common obstacles when
implementing state machines with enumerated type controls. One solution
to this problem is to type-define the enumerated control. Creating a type

© National Instruments Corporation 10-7 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

defined enumerated type control causes all the enumerated type control
copies to automatically update if you add or remove a state.

Transitioning State Machines

There are many ways to control what case a Case structure executes in a
state machine. Choose the method that best suits the function and
complexity of your state machine. Of the methods to implement transitions
in state machines, the most common and easy to use is the single Case
structure transition code, which can be used to transition between any
number of states. This method provides for the most scalable, readable, and
maintainable state machine architecture. The other methods can be useful in
specific situations, and it is important for you to be familiar with them.

Default Transition

For the default transition, no code is needed to determine the next state,
because there is only one possible state that occurs next. Figure 10-7 shows
a design pattern that uses a default transition implemented for a temperature
data acquisition system.

i3

o b=

Figure 10-7. Single Default Transition

Transition Between Two States

The following method involves making a decision on a transition between
two states. There are several patterns commonly used to accomplish this.
Figure 10-8 shows the Select function used to transition between two states.

LabVIEW Introduction Course Manual 10-8 ni.com

Lesson 10 Common Design Techniques and Patterns

1 "Analyzer” p

A nalysi

[ostart =+

o b=

Figure 10-8. Select Function Transition Code

This method works well if you know that the individual state always
transitions between two states. However, this method limits the scalability
of the application. If you need to modify the state to transition among more
than two states, this solution would not work and would require a major
modification of the transition code.

Transition Among Two or More States

Create a more scalable architecture by using one of the following methods
to transition among states.

Case Structure—Use a Case structure instead of the Select function for
the transition code.

Figure 10-9 shows the Case structure transition implemented for a
temperature data acquisition system.

.'.‘.'.‘.'.‘.'n ::.‘.'.‘.'.‘.'.‘.'.‘.'

i3

o b=

© National Instruments Corporation

Figure 10-9. Case Structure Transition Code

One advantage to using a Case structure is that the code is
self-documenting. Because each case in the Case structure corresponds
to an item in the enumerated type control, it is easy to read and
understand the code. A Case structure also is scalable. As the application
grows, you can add more transitions to a particular state by adding more
cases to the Case structure for that state. A disadvantage to using a Case
structure is that not all the code is visible at once. Because of the nature

10-9 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

of the Case structure, it is not possible to see at a glance the complete
functionality of the transition code.

Transition Array—If you need more of the code to be visible than a
Case structure allows, you can create a transition array for all the
transitions that can take place.

Figure 10-10 shows the transition array implemented for a temperature
data acquisition system.

M "Analyzer” i

|| i Analyzer ¥
 Error Handler |
hid Skart, ¥ i—=

Decizion Making Code

[

Figure 10-10. Transition Array Transition Code

In this example, the decision making code provides the index that
describes the next state. For example, if the code should progress to the
Error Handler state next, the decision making code provides the number
1 to the index input of the index array. This design pattern makes the
transition code scalable and easy to read. One disadvantage of this
pattern is that you must use caution when developing the transition code
because the array is zero-indexed.

State Diagram Toolkit—Another pattern that implements the
transition code is also used by the NI LabVIEW State Diagram Toolkit.
This pattern uses a large Case structure for every state and a smaller
While Loop that iterates through the state transitions until the proper
state transition is met. Figure 10-11 shows the LabVIEW State Diagram
Toolkit implementation for a temperature data acquisition system.

The LabVIEW State Diagram Toolkit adds the State Diagram Editor
function to LabVIEW to visually draw the logic that defines an
application. As this visual representation of the logic is created, the State
Diagram Editor generates the LabVIEW code that acts as the foundation
of your application.

Note The LabVIEW State Diagram Toolkit is not included in the LabVIEW
Professional Development System, it is available for purchase separately.

LabVIEW Introduction Course Manual

10-10 ni.com

Lesson 10 Common Design Techniques and Patterns

M "Analyzer” s

Analysi:

m'-_i status |

Figure 10-11. State Diagram Toolkit State Machine
The following conditions must exist in the State Diagram Toolkit state
machine:
* There must always be a default transition.

* The default transition must always have lowest priority so it is
evaluated last.

* The default transition condition must always be TRUE. You can wire
a Boolean constant to the condition output for the default transition.

© National Instruments Corporation 10-11 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

Case Study: Course Project

The course project acquires a temperature every half a second, analyzes
each temperature to determine if the temperature is too high or too low, and
alerts the user if there is a danger of heatstroke or freeze. The program logs
the data if a warning occurs. If the user has not clicked the stop button, the
entire process repeats. Figure 10-12 shows the state transition diagram for
the course project.

Time Elapsed = TRUE
and
Stop = FALSE

Warning = TRUE

Datalog

Time Elapsed = FALSE
and
Stop = FALSE

./

Warning = FALSE

Stop = TRUE

Figure 10-12. State Transition Diagram for the Course Project

LabVIEW Introduction Course Manual 10-12 ni.com

Lesson 10 Common Design Techniques and Patterns

Figures 10-13 through 10-16 illustrate the states of the state machine that
implements the state transition diagram detailed in Figure 10-12. If you
have installed the exercises and solutions, the project is located in the
C:\Exercises\LabVIEW Basics I\Course Project directory, and
you can further explore this state machine.

Initislize data and references.

| "Acquisition” 't
Temperature
o o Tl Temperature Data> =gt i {2
Temperature History
.
3 L
T Lower Limit DA Assistant
Beginning Stake data Temperature Mext State
Warning] >Next State> g Error in Upﬁﬂ,— T Upper L?m?t bt =
- error ouk Ui [DELY T Lower Limit
k= Lower Limit
[open or create ¥ E— =File Refrum > <E,§ % "j
L = A [0
3 H
- !l LE status
3
- B e s en | T}
3 :
Elapsed Time

TE® ﬂ " Reset

=

Time has Elapsed ¥ E

Figure 10-13. Acquisition State

Initialize data and references,
W analysis™]
Temperature
& ¥} =Temperature Data’ Warning it =
Warming
-
T Lawer Limit P True
Beginning State = | T Upper Linit ;’T’» Mext State
warming et States M oy L .

L[l
L
]

ropen or create JD E—' =File Refrum = ‘E %
—
3
- @

b

-
Elapsed Time

Time has Elapsed ¥
TR Freset % .
" &
o T)]

Figure 10-14. Analysis State

© National Instruments Corporation 10-13 LabVIEW Introduction Course Manual

Lesson 10

Common Design Techniques and Patterns

Initialize data and references,

Temperature

T Lower Limit

Warning

=
[+open or create | "D

= ¥}=:Temperature Data> ==

w1 — =Next State>

M'Datalog” v
| =
Temperature
T Upper Lirnik
T Lowwer Limit et State
‘Warning 4+ Time Check | =

E— =File Refrum > ‘E
d
3 L
H

Elapsed Time
Time has Elapsed ¥ E

ol Reset
i

E-E status

DL

Figure 10-15. Data Log State

Initialize data and references,

Temperature

T Lower Limit

‘Warring

B
[*ropen or create 7| D

=} =Temperature Datas: ==k

" Time Check” |

w1 =Next State

ol =
[True 't
Mext State
] L =

L[l

E— =File Refum = ‘E
d;
3 7
!

Elapsed Time
Time has Elapsed ¥

Resel
¥

stop

LabVIEW Introduction Course Manual

Figure 10-16. Time Check State

10-14

ni.com

Lesson 10 Common Design Techniques and Patterns

Exercise 10-1 State Machine VI

Goal
Build a VI that implements a state machine using a type-defined enumerated
control.

Scenario
You must design a template for a user interface state machine. The state
machine must allow the user to activate Process 1 or Process 2 in any order.
The state machine must also allow for expansion, as processes may be added
in the future.

Design

Inputs and Outputs

Table 10-1. Inputs and Outputs

Type Name Properties

Cancel Button Process 1 Boolean Text:
Process 1

Cancel Button Process 2 Boolean Text:
Process 1

Stop Button Stop —

State Transitions

Table 10-2. Inputs and Outputs

State Action Next State
Idle Poll user interface No button clicked: Idle State
for selection Process 1 clicked: Process 1 State

Process 2 clicked: Process 2 State
Stop clicked: Stop State

Process 1 Execute Process Idle State
1 code

Process 2 Execute Process Idle State
2 code

Stop Stop the state Stop State
machine

© National Instruments Corporation 10-15 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

Implementation

In the following steps, you will create the front panel window shown in
Figure 10-17.

Run Process 1

Run Process 2

STOP

Figure 10-17. State Machine VI Front Panel Window

1. Create a new project containing a blank VI.

Q

Q

Q

Select Empty Project from the Getting Started window.
Select File»Save Project.

Name the project State Machine.lvproj in the
C:\Exercises\LabVIEW Basics I\State Machine
directory.

Select File»New VI.

Save the new VI as State Machine.vi in the C: \Exercises\
LabVIEW Basics I\State Machine directory.

2. Create a menu cluster containing buttons for running process 1, running
process 2, and stopping the VI.

= 0
0
0
0
0
0
0
0

LabVIEW Introduction Course Manual

Place a cluster shell on the front panel window.
Relabel the cluster Menu.

Add a Cancel button to the cluster shell.
Relabel the Cancel button to Process 1.
Change the Boolean text to Run Process 1.

Make a copy of the Process 1 button, and place the copy within the
cluster shell.

Rename the copied button to Process 2.

Change the Boolean text on the copied button to Run Process 2.

10-16 ni.com

ZTOF

© National Instruments Corporation

Q

Q

Lesson 10 Common Design Techniques and Patterns

Right-click each button and select Visible Items»Label to hide the
labels.

Add a Stop button to the cluster shell.

Right-click the Stop button and select Visible Items»Label to hide
the label.

Modify the Boolean text on the buttons using the Text Settings on
the toolbar.
Text setting suggestions: 24 point bold Application Font.

Enlarge and arrange the buttons within the cluster using the resizing
tool and the following toolbar buttons: Align Objects, Distribute
Objects, and Resize Objects.

Right-click the cluster and select Autosizing»Size to Fit.

Right-click the cluster and select Visible Items»Label to hide the
label.

Create the type-defined enumerated control to control the state machine.

Q

Q

o 0O 0O U U

Add an Enum to the front panel window.

Right-click the enumerated control and select Edit Items. Modify
the list as follows:

Items Digital Display
Idle 0
Process 1 1
Process 2 2
Stop 3

Select OK to exit the Enum Properties dialog box.

Relabel the enumerated control State Enum.

Right-click the State Enum and select Advanced»Customize.
Select Type Def. from the Type Def. Status pull down menu.

Right-click the Enum and select Representation»U32.

10-17 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

Q

U 0O 0O U

Save the control as State Enum.ctl in the C:\Exercises\
LabVIEW Basics I\State Machine directory.

Close the Control Editor window.
Click Yes when asked if you would like to replace the control.
Switch to the block diagram.

Right-click the State Enum and select Change to Constant. The
enumerate control no longer appears on the front panel window.

In the following steps, you create the block diagram shown in Figure 10-18.
This block diagram contains four states: Idle, Process 1, Process 2 and Stop.

T "Idle", Default 't]
[,

Figure 10-18. Idle State

4. Create the block diagram shown in Figure 10-18. Use the following tips
to assist you:

LabVIEW Introduction Course Manual

Q

Pass the enumerated constant to the Case structure using a shift
register on the While Loop.

After you wire the enumerated constant to the selector terminal of
the Case structure, right-click the Case structure and select Add
Case for Every Value. This automatically adds a case for each item
in the enumerated constant.

Copy the enumerated constant to use within the Case structure. The
copy is also linked to the type-defined enumerated control.

Pass a False constant to the conditional terminal; the state machine
should not stop from the Idle state.

10-18 ni.com

Lesson 10 Common Design Techniques and Patterns

O In the Idle state, you convert the cluster to an array so that the array
can be searched for any button clicked. The Search 1D Array passes
out the index of the button clicked. Because the Idle State does not
have a button associated with it, this index must be incremented by
one. Use the Type Cast function to select the appropriate item from
the enumerated constant. It is very important that the order of the
cluster matches the order of the enumerated constant.

M"Process 1" ~pef 3

[Replace dialog box with Process 1 code. |

Process 1 B =Mext State>
= #1dle ~ i
I—E,Dne [e1de -

Return ko Idle skate
when complete,

Figure 10-19. Process 1 State

5. Complete the Process 1 state shown in Figure 10-19. Use the following
tips to assist you:

Q Use a One Button Dialog function to simulate the Process 1 code.

U Pass a False constant to the conditional terminal; the state machine
should not stop from Process 1 state.

m m)
M "Process 2 "t]

[Replace dialog box with Process 2 code. |
Process 2 === =Mext State>
il E—4

Feturn to Idle stake
when complate,

Figure 10-20. Process 2 State

© National Instruments Corporation 10-19 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

6.

Complete the Process 2 state shown in Figure 10-20. Use the following
tips to assist you:

U Use a One Button Dialog function to simulate the Process 2 code.

U Pass a False constant to the conditional terminal; the state machine
should not stop from the Process 2 state.

"Stop” b i

The Stop button has been pressed,
Stop the stake machine.

i =Mext State>

I*"StDE 'I

Test

3.

Figure 10-21. Stop State

Complete the Stop state shown in Figure 10-21. Use the following tips
to assist you:

U Pass a True constant to the conditional terminal; the state machine
should stop only from this state.

Save the VI when you have finished.

Switch to the front panel window.

Run the VI. Experiment with the VI to be sure it works as expected. If it
does not, compare your block diagram to Figures 10-18 through 10-21.

Save and close the VI when you are finished.

End of Exercise 10-1

LabVIEW Introduction Course Manual

10-20 ni.com

Lesson 10 Common Design Techniques and Patterns

D. Using Parallelism

Often, you need to program multiple tasks so that they execute at the same
time. In LabVIEW tasks can run in parallel if they do not have a data
dependency between them, and if they are not using the same shared
resource. An example of a shared resource is a file, or an instrument.

You learn about LabVIEW design patterns for executing multiple tasks at
the same time in the LabVIEW Basics II course. These design patterns
include parallel loops, master/slave, and producer/consumer.

© National Instruments Corporation 10-21 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

Summary

The benefits of using a state machine instead of a sequential programming
structure include:

* You can change the order of the sequence.
* You can repeat individual items in the sequence.

* You can set a condition to determine when an item in the sequence
should execute.

* You can stop the program at any point in the sequence.

LabVIEW Introduction Course Manual 10-22 ni.com

Lesson 10 Common Design Techniques and Patterns

Notes

© National Instruments Corporation 10-23 LabVIEW Introduction Course Manual

Lesson 10 Common Design Techniques and Patterns

Notes

LabVIEW Introduction Course Manual 10-24 ni.com

Appendix A Analyzing and Processing Numeric Data

Analyzing and Processing Numeric
Data

Users generally start their work by acquiring data into an application or
program because their tasks typically require interaction with physical
processes. In order to extract valuable information from that data, make
decisions on the process, and obtain results, the data needs to be
manipulated and analyzed.

As an engineering-focused tool, LabVIEW includes hundreds of analysis
functions. You can build these functions right into your applications to make
intelligent measurements and obtain results faster.

Topics

A. Choosing the Correct Method for Analysis
B. Analysis Categories

© National Instruments Corporation A-1 LabVIEW Introduction Course Manual

Appendix A

Analyzing and Processing Numeric Data

A. Choosing the Correct Method for Analysis

Users incorporate analysis into their applications and programs in different
ways. There are certain considerations that help determine the way in which
analysis should be performed.

Inline versus Offline Analysis

Inline analysis implies that you analyze the data within the same application
where you acquire it. For example, inline analysis applications where
decisions must be made during run time and the results have direct
consequences on the process, such as the changing parameters or executing
actions. Control applications typically use inline analysis. When dealing
with inline analysis, it is important to consider the amount of data acquired
and the particular analysis routines that are performed on that data. A proper
balance must be found because analysis routines could require intensive
calculations and have an adverse effect on the performance of the
application.

Other cases where inline analysis is appropriate include applications where
the parameters of the measurement must adapt to the characteristics of the
measured signal. Consider an application that logs one or more signals, but
these signals change very slowly except for sudden bursts of high-speed
activity. In order to reduce the amount of data logged, the application should
quickly recognize the need for a higher sampling rate, and reduce the
sampling rate when the burst is over. By measuring and analyzing certain
aspects of the signal, the application can adapt to the circumstances and
enable the appropriate execution parameters. Although this is only one
example, there are thousands of applications where a certain degree of
intelligence—the ability to make decisions based on various conditions—
and adaptability are required. Adding analysis algorithms to the application.
Add intelligence and adoptability to applications by adding inline analysis
algorithms to the application.

Decisions based on acquired data are not always made in an automated
manner. Frequently, engineers involved in the process need to monitor the
execution and determine whether the process is performing as expected or
if one or more variables need to be adjusted. Although it is not uncommon
for users to log data, extract it from a file or database, and then analyze it
offline to modify the process, many times the changes need to happen during
run time. In these cases, the application must handle the data coming from
the process, and then manipulate, simplify, format, and present the data in a
way that it is most useful to the user.

LabVIEW offers analysis routines for point-by-point execution. These
routines are designed specifically to meet the needs of inline analysis in
real-time applications. Point-by-point analysis is essential when dealing

LabVIEW Introduction Course Manual A-2 ni.com

Appendix A Analyzing and Processing Numeric Data

with control processes where high-speed, deterministic, point-by-point data
acquisition is present. Any time resources are dedicated to real-time data
acquisition, point-by-point analysis becomes a necessity as acquisition rates
and control loops are increased by orders of magnitude. The point-by-point
approach simplifies the design, implementation, and testing process because
the flow of the application closely matches the natural flow of the real-world
processes that the application monitors and controls. Point-by-point analysis
is streamlined and stable because it ties directly into the acquisition and
analysis process.

Use offline analysis when decision making on the process does not require
that the results be obtained in real-time. Offline analysis applications require
only that sufficient computational resources are available. The main intent
of such applications is to identify cause and effect of variables affecting a
process by correlating multiple data sets. These applications generally
require importing data from custom binary or ASCII files and commercial
databases such as Oracle, Access, and other SQL/ODBC-enabled databases.
After the data is imported into LabVIEW, users perform several or hundreds
of available analysis routines, manipulate the data, and arrange it in a
specific format for reporting purposes.

Programmatic versus Interactive Analysis

Acquiring data and processing it for the sake of online visualization is often
insufficient. Users may store hundreds or thousands of megabytes of data in
hard drives and databases. After anywhere from one to hundreds of runs of
the application, users extract information to make decisions, compare
results, and make appropriate changes to the process, until the desired
results are achieved. It is easy to acquire large amounts of data very quickly.
In fact, with a fast DAQ device and enough channels, it may only take a few
milliseconds to compile thousands of values. It is not a trivial task to make
sense out of all that data. Engineers and scientists are typically expected to
present reports, create graphs, and ultimately corroborate any assessments
and conclusions with empirical data.

To simplify the process of analyzing measurements, you can create
applications that provide dialog boxes and interfaces that others can use so
that depending on their input, specific analysis routines are performed on
any given data set. This type of application requires users to build a certain
degree of interactiveness into their applications. For this to be efficient, you
must have extensive knowledge about the information and the types of
analysis in which the user is interested.

You can also perform significant data reduction and formatting before
storing data to disk, so that when the data is retrieved for further analysis, it
is easier to handle.

© National Instruments Corporation A-3 LabVIEW Introduction Course Manual

Appendix A Analyzing and Processing Numeric Data

B. Analysis Categories

LabVIEW offers hundreds of built-in analysis functions that cover different
areas and methods of extracting information from acquired data. You can
use these functions as is, or modify, customize, and extend them to suit a
particular need. These functions are categorized in the following groups:
Measurement, Signal Processing, Mathematics, Image Processing, Control,
Simulation, and Application Areas.

¢ Measurement

Amplitude and Level

Frequency (Spectral) Analysis
Noise and Distortion

Pulse and Transition

Signal and Waveform Generation
Time Domain Analysis

Tone Measurements

* Signal Processing

Digital Filters

Convolution and Correlation

Frequency Domain

Joint Time-Frequency Analysis (Signal Processing Toolset)
Sampling/Resampling

Signal Generation

Super-Resolution Spectral Analysis (Signal Processing Toolset)
Transforms

Time Domain

Wavelet and Filter Bank Design (Signal Processing Toolset)
Windowing

¢ Mathematics

LabVIEW Introduction Course Manual

Basic Math

Curve Fitting and Data Modeling
Differential Equations
Interpolation and Extrapolation
Linear Algebra

Nonlinear Systems

Optimization

A-4 ni.com

Appendix A

Root Finding
Special Functions

Statistics and Random Processes

Image Processing

Blob Analysis and Morphology
Color Pattern Matching

Filters

High-Level Machine Vision Tools

High-Speed Grayscale Pattern Matching

Image Analysis

Image and Pixel Manipulation
Image Processing

Optical Character Recognition

Region-of-Interest Tools

Control

PID and Fuzzy Control

Simulation

Analyzing and Processing Numeric Data

Simulation Interface (Simulation Interface Toolkit)

Application Areas

Machine Condition Monitoring (Order Analysis Toolset)

Machine Vision (IMAQ, Vision Builder)

Motion Control

Sound and Vibration (Sound and Vibration Analysis Toolset)

For a complete list of LabVIEW analysis functions refer to ni.com/
analysis.

© National Instruments Corporation

A-5

LabVIEW Introduction Course Manual

Appendix A Analyzing and Processing Numeric Data

Exercise A-1
Goal

Description

Concept: Analysis Types

Choose when to use inline, offline, programmatic, or interactive analysis for
an application.

For each scenario, determine which forms of analysis to use. Most scenarios
use more than one form.

Scenario 1

The failure rate of your manufacturing line is related directly to the speed of
production. You need to monitor the failure rate programmatically. If the
failure rate is greater than 3%, decrease the speed of the line. If the failure
rate is less than 2%, increase the speed of the line.

Inline Offline Programmatic Interactive

Scenario 2

You are listening to a radio station. The frequency components of the radio
station signal are determined and recorded to file. If you have difficulty
hearing the radio station, you tell the VI to pass the signal through a filter
before recording the data.

Inline Offline Programmatic Interactive

Scenario 3

You are recording temperature and pressure data. Once a week, you prepare
a report for your manager correlating the temperature and pressure trends
during thunderstorms.

Inline Offline Programmatic Interactive

Scenario 4

You are performing stress analysis on a bridge. During rush hour, you must
also record vibration data on the bridge. It is considered rush hour when
more than 100 cars use the bridge in 5 minutes. A sensor records the number
of cars crossing the bridge.

Inline Offline Programmatic Interactive

Refer to the following page for answers to these scenarios.

LabVIEW Introduction Course Manual A-6 ni.com

Appendix A Analyzing and Processing Numeric Data

Scenario 1
* Inline Analysis
* Programmatic Analysis

Inline analysis determines the speed of the line and the failure rate.
Programmatic analysis determines when to change the speed of the line.

Scenario 2

* Inline Analysis

* Interactive Analysis

The user tells the VI when to apply the filter, which means the analysis is

interactive. However, because the filtering happens immediately when the
user specifies, the analysis is inline.

Scenario 3

* Offline Analysis

The data can be correlated at any point and does not need to occur as the data
is acquired. When it is analyzed, it is usually analyzed programmatically.

However, without more information, you cannot determine whether
programmatic or interactive analysis is appropriate.

Scenario 4

* Programmatic Analysis

The VI uses the sensor to determine when rush hour is occurring and
immediately begins recording the additional data. Since no information is
given on how the data is analyzed, you cannot determine whether inline or
offline analysis is appropriate.

End of Exercise A-1

© National Instruments Corporation A-7 LabVIEW Introduction Course Manual

Appendix A Analyzing and Processing Numeric Data

Notes

LabVIEW Introduction Course Manual A-8 ni.com

Measurement Fundamentals

This lesson explains concepts that are critical to acquiring and generating
signals effectively. These concepts focus on understanding the parts of your
measurement system that exist outside of the computer. You will learn about
transducers, signal sources, signal conditioning, grounding of your
measurement system, and ways to increase the quality of your measurement
acquisition. This lesson provides basic understanding of these concepts.

Topics

A. Using Computer-Based Measurement Systems
B. Understanding Measurement Concepts

C. Increasing Measurement Quality

© National Instruments Corporation B-1 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

A. Using Computer-Based Measurement Systems

The fundamental task of all measurement systems is the measurement
and/or generation of real-world physical signals. Measurement devices help
you acquire, analyze, and present the measurements you take.

An example of a measurement system is shown in Figure B-1. Before a
computer-based measurement system can measure a physical signal, such as
temperature, a sensor or transducer must convert the physical signal into an
electrical signal, such as voltage or current. You may need to condition the
electrical signal to obtain a better measurement of the signal. Signal
conditioning may include filtering to remove noise or applying
gain/attenuation to the signal to bring it into an acceptable measurement
range. After conditioning the signal, measure the signal and communicate
the measurement to the computer.

This course teaches two methods of communicating the measured electrical
signal to the computer—with a data acquisition (DAQ) device or with a
stand-alone instrument (instrument control). Software controls the overall
system, which includes acquiring the raw data, analyzing the data, and
presenting the results. With these building blocks, you can obtain the
physical phenomenon you want to measure into the computer for analysis
and presentation.

LabVIEW Introduction Course Manual B-2 ni.com

Appendix B Measurement Fundamentals

Physical Phenomenon
Light, Pressure,,I‘emperature, etc.

Sensors and Transducers

ERERER.

Signal Conditioning

Signal Conditioning

1
N Z

GPIB Board/Serial Port/Other Communication

Driver Engines/API
NI-DAQmx, NI-DAQmx Base

Driver Engines/API
NI-488.2, NI-VISA, NI-Serial

—
N Z

—
N Z

Application Software
LabVIEW, LabWindows/CVI, Measurement Studio, or Other Programming Environments

Figure B-1. Measurement System Overview

B. Understanding Measurement Concepts

This section introduces you to concepts you should be familiar with before
taking measurements with a DAQ device and instruments.

Signal Acquisition

Signal acquisition is the process of converting physical phenomena into data
the computer can use. A measurement starts with using a transducer to
convert a physical phenomenon into an electrical signal. Transducers can
generate electrical signals to measure such things as temperature, force,
sound, or light. Table B-1 lists some common transducers.

© National Instruments Corporation

LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

Table B-1. Phenomena and Transducers

Phenomena Transducer
Temperature Thermocouples
Resistance temperature detectors (RTDs)
Thermistors

Integrated circuit sensors

Light Vacuum tube photosensors
Photoconductive cells

Sound Microphones

Force and pressure | Strain gages
Piezoelectric transducers

Load cells
Position Potentiometers
(displacement) Linear voltage differential transformers (LVDT)

Optical encoders

Fluid flow Head meters
Rotational flowmeters
Ultrasonic flowmeters

pH pH electrodes

Signal Sources

Analog input acquisitions use grounded and floating signal sources.

Grounded Signal Sources

A grounded signal source is one in which the voltage signals are referenced
to a system ground, such as the earth or a building ground, as shown in
Figure B-2. Because such sources use the system ground, they share a
common ground with the measurement device. The most common examples
of grounded sources are devices that plug into a building ground through
wall outlets, such as signal generators and power supplies.

—o
:+:
Vs

Ground /7 7/

Figure B-2. Grounded Signal Source

LabVIEW Introduction Course Manual B-4 ni.com

Appendix B Measurement Fundamentals

@ Note The grounds of two independently grounded signal sources generally are not at the
same potential. The difference in ground potential between two instruments connected to
the same building ground system is typically 10 mV to 200 mV. The difference can be
higher if power distribution circuits are not properly connected. This causes a
phenomenon known as a ground loop.

Floating Signal Sources

In a floating signal source, the voltage signal is not referenced to any
common ground, such as the earth or a building ground, as shown in
Figure B-3. Some common examples of floating signal sources are
batteries, thermocouples, transformers, and isolation amplifiers. Notice in
Figure B-3 that neither terminal of the source is connected to the electrical
outlet ground as in Figure B-2. Each terminal is independent of the system
ground.

Vs

Ground / J 7

Figure B-3. Floating Signal Source

Signal Conditioning

Signal conditioning is the process of measuring and manipulating signals to
improve accuracy, isolation, filtering, and so on. Many stand-alone
instruments and DAQ devices have built-in signal conditioning. Signal
conditioning also can be applied externally by designing a circuit to
condition the signal or by using devices specifically made for signal
conditioning. National Instruments has SCXI devices and other devices that
are designed for this purpose. Throughout this section, different DAQ and
SCXI devices illustrate signal conditioning topics.

To measure signals from transducers, you must convert them into a form a
measurement device can accept. For example, the output voltage of most
thermocouples is very small and susceptible to noise. Therefore, you might
need to amplify the thermocouple output before you digitize it. This
amplification is a form of signal conditioning. Common types of signal
conditioning include amplification, linearization, transducer excitation, and
isolation.

© National Instruments Corporation B-5 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

Figure B-4 shows some common types of transducers and signals and the
signal conditioning each requires.

Transducers/Signals

Signal Conditioning

» | Amplification, Linearization, and

Thermocouples

Cold-Junction Compensation

RTDs

Current Excitation, Four-Wire

P and Three-Wire Configuration,
Linearization

»| Voltage Excitation, Bridge

Strain Gages

o Configuration, and Linearization

Common Mode

> Isolation Amplifiers

or High Voltages

(Optical Isolation)

Loads Requiring AC Switching |

Electromechanical Relays

4

or Large Current Flow

\ 4

or Solid-State Relays

Signals with High

Frequency Noise

\ 4

Lowpass Filters

DAQ Device

Figure B-4.

Amplification

Common Transducers and Signal Conditioning Types

Amplification is the most common type of signal conditioning. Amplifying
electrical signals improves accuracy in the resulting digitized signal and
reduces the effects of noise.

Signals should be amplified as close to the signal source as possible. By
amplifying a signal near the device, any noise that attached to the signal is
also amplified. Amplifying near the signal source results in the largest
signal-to-noise ratio (SNR). For the highest possible accuracy, amplify the
signal so the maximum voltage range equals the maximum input range of
the analog-to-digital converter (ADC).

LabVIEW Introduction Course Manual

ni.com

Appendix B Measurement Fundamentals

Noise
Instrumentaion
Amplifier
MUX
— ADC
Low-Level
Signal External —
Amplifier DAQ Device

Figure B-5. Signal Amplification

If you amplify the signal at the DAQ device while digitizing and measuring
the signal, noise might have entered the lead wire, which decreases SNR.
However, if you amplify the signal close to the signal source with a SCXI
module, noise has a less destructive effect on the signal, and the digitized
representation is a better reflection of the original low-level signal. Refer to
the National Instruments Web site at ni . com/ info and enter the info code
exd2hc for more information about analog signals.

Linearization

Many transducers, such as thermocouples, have a nonlinear response to
changes in the physical phenomena you measure. LabVIEW can linearize
the voltage levels from transducers so you can scale the voltages to the
measured phenomena. LabVIEW provides scaling functions to convert
voltages from strain gages, RTDs, thermocouples, and thermistors.

Transducer Excitation

Signal conditioning systems can generate excitation, which some
transducers require for operation. Strain gages and RTDs require external
voltage and currents, respectively, to excite their circuitry into measuring
physical phenomena. This type of excitation is similar to a radio that needs
power to receive and decode audio signals.

Isolation

Another common way to use signal conditioning is to isolate the transducer
signals from the computer for safety purposes.

A Caution When the signal you monitor contains large voltage spikes that could damage
the computer or harm the operator, do not connect the signal directly to a DAQ device
without some type of isolation.

You also can use isolation to ensure that differences in ground potentials do
not affect measurements from the DAQ device. When you do not reference
the DAQ device and the signal to the same ground potential, a ground loop

© National Instruments Corporation B-7 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

can occur. Ground loops can cause an inaccurate representation of the
measured signal. If the potential difference between the signal ground and
the DAQ device ground is large, damage can occur to the measuring system.
Isolating the signal eliminates the ground loop and ensures that the signals
are accurately measured.

Measurement Systems

You configure a measurement system based on the hardware you use and the
measurement you take.

Differential Measurement Systems

Differential measurement systems are similar to floating signal sources in
that you make the measurement with respect to a floating ground that is
different from the measurement system ground. Neither of the inputs of a
differential measurement system are tied to a fixed reference, such as the
earth or a building ground. Handheld, battery-powered instruments and
DAQ devices with instrumentation amplifiers are examples of differential
measurement systems.

A typical National Instruments device uses an implementation of an
eight-channel differential measurement system as shown in Figure B-6.
Using analog multiplexers in the signal path increases the number of
measurement channels when only one instrumentation amplifier exists.
In Figure B-6, the AIGND (analog input ground) pin is the measurement
system ground.

LabVIEW Introduction Course Manual B-8 ni.com

Appendix B Measurement Fundamentals

MUX

CHO+ O—————F—0 0
CH1+ 0——— G0

CH2+ o e

Instrumentation
Amplifier

CH7+o——— G0

MUX

CHO- 0————F—0 0 -

<
3

CHl-o———1—0 0

CH2- o oo

; 4

CH7-0—— | o

(e
AIGND

Figure B-6. Typical Differential Measurement System

Referenced and Non-Referenced Single Ended

Referenced and non-referenced single-ended measurement systems are
similar to grounded sources in that you make the measurement with respect
to a ground. A referenced single-ended measurement system measures
voltage with respect to the ground, AIGND, which is directly connected to
the measurement system ground. Figure B-7 shows a 16-channel referenced
single-ended measurement system.

© National Instruments Corporation B-9 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

MUX

CHO O———+—0 0

CHl o——1—G o

CH2 o

R,

Instrumentation
Amplifier

CH15 o0—————+1+—0 0

AIGND o

Figure B-7. Typical Referenced Single-Ended (RSE) Measurement System

DAQ devices often use a non-referenced single-ended (NRSE)

measurement technique, or pseudodifferential measurement, which is

a variant of the referenced single-ended measurement technique. Figure B-8
shows a NRSE system.

MUX

CHO+ O—————1—0 0O

CH1+ o————G 0

CH2+ 0

oo

Instrumentation
Amplifier

CH1540———— G0

AISENSE ©

AIGND v

Figure B-8. Typical Non-Referenced Single-Ended (NRSE) Measurement System

In a NRSE measurement system, all measurements are still made with

respect to a single-node analog input sense (AISENSE on E Series devices),

but the potential at this node can vary with respect to the measurement

system ground (AIGND). A single-channel NRSE measurement system is
the same as a single-channel differential measurement system.

LabVIEW Introduction Course Manual

B-10

ni.com

Appendix B Measurement Fundamentals

Signal Sources and Measurement Systems Summary

Figure B-9 summarizes ways to connect a signal source to a measurement

system.
Signal Source Type
Floating Signal Source Grounded Signal Source
(Not Connected to Building Ground)
Examples Examples
e Ungrounded Thermocouples ® Plug-in Instruments with
Input e Signal Conditioning with Nonisolated Outputs
Isolated Outputs
* Battery Devices
ACHE) | 15 ACH() | 15
@/1 ACH() >‘O Vi ACH(-) >O
Differential
(DIFF) R
AIGND AIGND
See text for information on bias resistors.
NOT RECOMMENDED
ACH
+
Vi
Single-Ended — @%—>®
Ground "
Referenced
(RSE)
Ground-loop losses, V, are added to
measured signal.
ACH ACH
+ +
@1 AISENSE >O Vi AISENSE >‘O
Single-Ended —
Nonreferenced
(NRSE) R AIGND AIGND
See text for information on bias resistors.

Figure B-9. Signal Source and Measurement Systems Summary

© National Instruments Corporation B-11 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

C. Increasing Measurement Quality

When you design a measurement system, you may find that the
measurement quality does not meet your expectations. You might want to
record the smallest possible change in a voltage level. Perhaps you cannot
tell if a signal is a triangle wave or a sawtooth wave and would like to see a
better representation of the shape of a signal. Often, you want to reduce the
noise in the signal. This section introduces methods for achieving these
three increases in quality.

Achieving Smallest Detectable Change

The following reasons affect achieving the smallest detectable change in
voltage:

* The resolution and range of the ADC
* The gain applied by the instrumentation amplifier

* The combination of the resolution, range, and gain to calculate a
property called the code width value

Resolution

The number of bits used to represent an analog signal determines the
resolution of the ADC. The resolution on a DAQ device is similar to

the marks on a ruler. The more marks a ruler has, the more precise the
measurements are. The higher the resolution is on a DAQ device, the higher
the number of divisions into which a system can break down the ADC range,
and therefore, the smaller the detectable change. A 3-bit ADC divides the
range into 23 or eight divisions. A binary or digital code between 000 and
111 represents each division. The ADC translates each measurement of the
analog signal to one of the digital divisions. The following illustration shows
a 5 kHz sine wave digital image obtained by a 3-bit ADC. The digital signal
does not represent the original signal adequately because the converter has
too few digital divisions to represent the varying voltages of the analog
signal. However, increasing the resolution to 16 bits to increase the ADC
number of divisions from eight (23) to 65,536 (216) allows the 16-bit ADC
to obtain an extremely accurate representation of the analog signal.

LabVIEW Introduction Course Manual B-12 ni.com

Appendix B Measurement Fundamentals

10.00
8.75
7.50 --
6.25
5.00
3.75
2.50
1.25

Amplitude (V)

0 50 100 150 200
Time (ps)

Figure B-10. 3-Bit and 16-Bit Resolution Example

Device Range

Range refers to the minimum and maximum analog signal levels that the
ADC can digitize. Many DAQ devices feature selectable ranges (typically
0to 10 V or—-10 to 10 V), so you can match the ADC range to that of the
signal to take best advantage of the available resolution to accurately
measure the signal. For example, in Figure B-11, the 3-bit ADC in chart 1
has eight digital divisions in the range from O to 10 V, which is a unipolar
range. If you select a range of —10 to 10 V, which is a bipolar range, as
shown in chart 2, the same ADC separates a 20 V range into eight divisions.
The smallest detectable voltage increases from 1.25 to 2.50 V, and chart 2 is
a much less accurate representation of the signal.

10.00 10.00
8.75 | -- 750 |--
S 750¢ S 500
g 625 g 250
2 5.00 2 0
g 375 g —250
< 250 < -5.00
1.25 -7.50
0 ; ; : -10.00 ; . .
0 50 100 150 200 0 50 100 150 200
Time (us) Time (us)
1 Range=0to 10V 2 Range=-10to 10V

Figure B-11. Range Example

Amplification

Amplification or attenuation of a signal can occur before the signal is
digitized to improve the representation of the signal. By amplifying or
attenuating a signal, you can effectively decrease the input range of an ADC
and thus allow the ADC to use as many of the available digital divisions as
possible to represent the signal.

© National Instruments Corporation B-13 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

For example, Figure B-12 shows the effects of applying amplification to a
signal that fluctuates between 0 and 5 V using a 3-bit ADC and a range of
0 to 10 V. With no amplification, or gain = 1, the ADC uses only four of the
eight divisions in the conversion. By amplifying the signal by two before
digitizing, the ADC uses all eight digital divisions, and the digital
representation is much more accurate. Effectively, the device has an
allowable input range of 0 to 5 V because any signal above 5 V, when
amplified by a factor of two, makes the input to the ADC greater than 10 V.

10.00
8.75

7.5

6.25

VvV 5.00 |
3.75
2.50
1.25
0.00

Gain=1

Gain =2

Figure B-12. Amplification Example

The range, resolution, and amplification available on a DAQ device
determine the smallest detectable change in the input voltage. This change
in voltage represents one least significant bit (LSB) of the digital value and
is also called the code width.

Code Width

Code width is the smallest change in a signal that a system can detect.
Calculate code width using the following formula:

Where C is code width, D is device input range, and R is bits of resolution

Device input range is a combination of the gain applied to the signal and the
input range of the ADC. For example, if the ADC input range is —10 to
+10 V peak to peak and the gain is 2, the device input range is -5 to +5 V
peak to peak, or 10 V.

LabVIEW Introduction Course Manual B-14 ni.com

Appendix B Measurement Fundamentals

The smaller the code width, the more accurately a device can represent
the signal. The formula confirms what you have already learned in the
discussion on resolution, range, and gain:

* Larger resolution = smaller code width = more accurate representation
of the signal

* Larger amplification = smaller code width = more accurate
representation of the signal

* Larger range = larger code width = less accurate representation of the
signal

Determining the code width is important in selecting a DAQ device.

For example, a 12-bit DAQ device with a 0 to 10 V input range and an
amplification of one detects a 2.4 mV change, while the same device with
a—10 to 10 V input range would detect a change of 4.8 mV.

C=D-LR - 10-%:2.4;711/
(27) 27)
1 1

C=D —R=20-T=4.87’I’ZV
(27) 27)

Increasing Shape Recovery

The most effective way of increasing the shape recovery of a signal is to
reduce your code width and increase your sampling frequency. To measure
the frequency of your signal effectively, you must sample the signal at least
at the Nyquist frequency.

The following states the Nyquist Theorem:

fsampling >2 .fsignal

Where f;piing 18 the sampling rate, and f;,, is the highest frequency
component of interest in the measured signal.

The Nyquist Theorem states that you must sample a signal at a rate greater than
twice the highest frequency component of interest in the signal to capture the
highest frequency component of interest. Otherwise, the high-frequency content
aliases at a frequency inside the spectrum of interest, called the pass-band.

To determine how fast to sample, refer to Figure B-13, which shows the

effects of various sampling rates. In case A, the sine wave of frequency f'is
sampled at the same frequency f. The reconstructed waveform appears as an
alias at DC. However, if you increase the sampling rate to 2f, the digitized
waveform has the correct frequency (same number of cycles) but appears as

© National Instruments Corporation B-15 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

a triangle waveform. In this case fis equal to the Nyquist frequency. By
increasing the sampling rate to well above f, for example 5f, you can more

accurately reproduce the waveform. In case C the sampling rate is atg
4n7/3 _ 2f
2 3

Because fis larger than the Nyquist frequency, this sampling rate reproduces
an alias waveform of incorrect frequency and shape.

The Nyquist frequency in this case is

The faster the sample, the better the shape recovery of the signal. However,
available hardware often limits the sampling rate.

A
Sampled at f

Sampled at 2f

Sampled at 4f/3 \/

Decreasing Noise

Figure B-13. Effects of Sampling Rates

To reduce noise take the following precautions:
* Use shielded cables or a twisted pair of cables.
* Minimize wire length to minimize noise the lead wires pick up.

* Keep signal wires away from AC power cables and monitors to reduce
50 or 60 Hz noise.

* Increase the signal-to-noise (SNR) ratio by amplifying the signal close
to the signal source.

* Acquire data at a higher frequency than necessary, then average the data
to reduce the impact of the noise, as noise tends to average to zero.

LabVIEW Introduction Course Manual B-16 ni.com

Appendix B Measurement Fundamentals

Exercise B-1 Concepts: Measurement Fundamentals

Goal

Understand how resolution, voltage range, gain, and aliasing affect a
measured signal.

Description

I. OpenResolution.viinthe C:\Exercises\LabVIEW Basics I\
Measurement Fundamentals directory.

This VI simulates the acquisition of a sine wave and the digitization that
occurs with an analog to digital convertor (ADC). This VI contains the
following controls and indicators:

© National Instruments Corporation

Input Signal Voltage—This input specifies the range of the signal
being acquired. The default value of the control is +1 volt. This
means that the range of the signal is 2 V—voltage between the
highest point of the signal and the lowest point of the signal.

Resolution (ADC)—This input specifies the resolution of the ADC
of the data acquisition device used to acquire the signal. The default
value of the control is 3 bits.

Device Input Range—This input incorporates the input range of the
ADC and the gain applied to the signal. The default value of the
control is +1 Volts. This peak to peak voltage is equivalent to 2 V.
Because the input range of the ADC is £10 V, this means that there
is a gain of 10 applied to the signal.

Code Width—This output calculates the code width using the
current values of the controls, where C is code width, D is device
input range, and R is bits of resolution:

C=D-—— =21 -o2sy
(27) (27)
B-17 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

2. Run the VI and experiment with the values of the controls.

Input Signal Yoltage

Input and Cutput Waveforms

understand the importance of each input.

+i- 1 Walt i | il = Input Signal [
0.8- ADC Output
Resolution (A0C) 0.6 -
% hits — 1 - fad Code Width (Yolts)
o e 0.25
B 0.2
Select the range that most -CEIZ -
closely bounds input signal '
|:|I6
Device Inpuk Range * G-
+- 1 Vol - .
* gquivalent to input range EII 2ID 4ID SIEI BIEI IDID 12IIZ| lt*lrtl lﬁlutl 18|D 2E||D
of ADC divided by gain Samples STOP
Figure B-14. Resolution VI Front Panel
Q Click the Run button to run the VI.
O Leave the default settings for the controls.
The red plot demonstrates the actual input sinewave. The white plot
demonstrates the output of the ADC. Notice that the white plot is a
poor representation of the signal. You can see the code width of
.25 V shown on the graph representing only 8 discrete levels.
U Change the Resolution (ADC).
Notice that the signal representation quality increases as you
increase the ADC resolution.
O Set the resolution to 3 bits.
O Change the Device Input Range.
Notice that when the range is too large, the resolution is not
efficiently divided among the signal range. When the input range is
too small, part of the signal is cut off.
Q Experiment further with different control values until you

It is important to ensure that the input signal range is as close to the device

input range as possible.

LabVIEW Introduction Course Manual

B-18

ni.com

© National Instruments Corporation

Appendix B Measurement Fundamentals

Using the Resolution VI, determine the code width of an input signal
that varies between +0.8 V using a DAQ device with a resolution of
16 bits. Assume that gain is efficiently applied.

Code Width:

Determine the code width of an input signal that varies between 10 V
using a DAQ device with a resolution of 8 bits. The device input range
issetto 10 V.

Code Width:

If the device input range is =1 V, and the resolution is 12 bits, what is the
largest input signal you can read without cutting off the input signal?

Input Signal Range:
Stop and close the VI when you are finished.

Open Aliasing.vi in the C: \Exercises\LabVIEW Basics I\
Measurement Fundamentals directory.

This VI simulates the acquisition of a waveform at a specific sampling
frequency. As you adjust the sampling frequency and the frequency of
the acquired waveform, you can observe the Nyquist Theorem in effect.
This VI contains the following controls:

* Original Signal

— Frequency—This input specifies the frequency of the signal
being acquired. You can increase or decrease this frequency by
turning the knob.

— Sampled Waveform—The input allows you to choose between a
sine wave or a square wave. Use the sine wave input to
experiment with the Nyquist Theorem, and the square wave to
understand how the sampling frequency affects shape recovery.

* Sampled Signal

— Sampling Rate (Hz)—This input specifies the rate at which the
DAQ device takes a sample of the acquired signal. According to
the Nyquist Theorem, this rate should be at least twice the
frequency of the sampled signal.

B-19 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

8. Run the VI and experiment with the values of the controls until the
acquired frequency is wrong.

Original Signal
Choose the
Frequency: 0.0+
2o ZM - sm S
RN
15M > <. 35M ., A0
._\ z} = _SU.D_
10m- Z40m 40,0
= - -50.0-
5M 45M
N -60.0-) I | | | | 1] | | 1
- 0.0 5.0M io.om 15.0M z0.0M 25.0M 30.0M 35.0M 40.0M 45.0M 50.0M
S0mM
Measured Frequency (Hz)
Chonse the A e Sampled
Waveform Type: 7 Original -
a
=
Sampled Signal 2
=
E
g -
Sampling Rate Hz
10 M5{s e]
-1.5 | | | | I I [] I 1
0.0 200.0n400.0n600,0n800.0n 1.00 120 140 160 1.80 2.0u STOP
Time {s})

Figure B-15. Aliasing VI Front Panel
4 Set the Waveform Type to Sine.
O Set the Sampling Rate Hz to 10 MS/s (megasamples per second).

O Adjust the Frequency of the Sampled Signal, starting at the lowest
frequency, and moving up until the frequency reported on the top
chart is no longer correct. Notice how the Sampled plot becomes
more distorted as you increase the Frequency of the Sampled Signal.
After you have passed the Nyquist frequency (5 MHz in this case),
the frequency recorded is no longer correct. This is an example of
aliasing.

9. Try other values for the controls using a sine wave.

10. Set the Waveform Type to Square. Modify the controls to see how shape
recovery is affected by the sampling frequency and the frequency of the
signal.

11. Stop and close the VI when you are finished.

End of Exercise B-1

LabVIEW Introduction Course Manual B-20 ni.com

Appendix B Measurement Fundamentals

Self-Review: Quiz

1. Calculate the code width for signal acquired using a 16 bit DAQ device
with a device input range of 5 V.

2. You are acquiring a triangle wave with a frequency of 1100 Hz. Which
sampling frequency should you use for best shape recovery of the

signal?

a. 1kHz

b. 10kHz

c. 100 kHz
d. 1000 kHz

3. You are acquiring a triangle wave with a frequency of 1100 Hz. You can
sample the signal at the following rates. Which is the minimum
sampling frequency you should use to reliably acquire the frequency of
the signal?

a. 1kHz

b. 10kHz

c. 100 kHz
d. 1000 kHz

© National Instruments Corporation B-21 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

Self-Review: Quiz Answers

© National Instruments Corporation

. Calculate the code width for signal acquired using a 16 bit DAQ device

with a device input range of 5 V.

C = D~L = (S-L)= 76.29uV

R 16
(27) (27)
You are acquiring a triangle wave with a frequency of 1100 Hz. Which

sampling frequency should you use for best shape recovery of the
signal?

a. 1kHz

b. 10kHz

c. 100 kHz
d. 1000 kHz

You are acquiring a triangle wave with a frequency of 1100 Hz. You can
sample the signal at the following rates. Which is the minimum
sampling frequency you should use to reliably acquire the frequency of
the signal?

a. 1kHz

b. 10 kHz
c. 100 kHz
d. 1000 kHz

B-23 LabVIEW Introduction Course Manual

Appendix B Measurement Fundamentals

Notes

LabVIEW Introduction Course Manual B-24 ni.com

CAN: Controller Area Network

A Controller Area Network (CAN) bus is a high-integrity serial bus system
for networking intelligent devices. CAN busses and devices are common
components in automotive and industrial systems. Using a CAN interface
device, you can write LabVIEW applications to communicate with a CAN
network.

Topics

History of CAN

CAN Basics

Channel Configuration

CAN APIs

CAN Programming in LabVIEW (Channel API)

moaw»

© National Instruments Corporation c-1 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

A. History of CAN

In the past few decades, the need for improvements in automotive
technology caused increased usage of electronic control systems for
functions such as engine timing, anti-lock brake systems, and distributorless
ignition.

Originally, point-to-point wiring systems connected electronic devices in
vehicles. More and more electronics in vehicles resulted in bulky wire
harnesses that were heavy and expensive. To eliminate point-to-point
wiring, automotive manufacturers replaced dedicated wiring with in-vehicle
networks, which reduced wiring cost, complexity, and weight. In 1985,
Bosch developed the Controller Area Network (CAN), which has emerged
as the standard, in-vehicle network.

CAN provides a cheap, durable network that allows the devices to speak
through the Electronic Control Unit (ECU). CAN allows the ECU to have
one single CAN interface rather than analog inputs to every device in the
system. This decreases overall cost and weight in automobiles. Each of the
devices on the network has a CAN controller chip and is therefore
intelligent. All transmitted messages are seen by all devices on the network.
Each device can decide if the message is relevant or if it can be filtered.

As CAN implementations increased in the automotive industry, CAN (high
speed) was standardized internationally as ISO 11898. Later, low-speed
CAN was introduced for car body electronics. Finally, single-wire CAN was
introduced for some body and comfort devices. Major semiconductor
manufacturers such as Intel, Motorola, and Philips developed CAN chips.

By the mid-1990s, CAN was the basis of many industrial device networking
protocols, including DeviceNet and CANOpen.

Automotive Applications

Examples of CAN devices include engine controller (ECU), transmission,
ABS, lights, power windows, power steering, instrument panel, and so on.

Automotive CAN Devices

Instrument Panel
Power Steering
Power Windows
Transmission
Lights

ABS

Figure C-1. Automotive CAN Devices

LabVIEW Introduction Course Manual c-2 ni.com

Other CAN Markets

Appendix G CAN: Controller Area Network

Comparing the requirements for automotive and industrial device networks
showed the following similarities:

the transition away from dedicated signal lines

resistance to harsh environments

and real-time capabilities

Because of these similarities, CAN became widely used in industrial
applications such as textile machinery, packaging machines, and production
line equipment such as photoelectric sensors and motion.

With its growing popularity in automotive and industrial applications, CAN
has been increasingly used in a wide variety of applications. Usage in
systems such as agricultural equipment, nautical machinery, medical
apparatus, semiconductor manufacturing equipment, avionics, and machine
tools validate the versatility of CAN.

Military Public
Systems Transportation
Farm @ Avioni
Machinery vionics

Other Applications Including
Medical Devices
Printing Machines

© National Instruments Corporation

Figure C-2. Other CAN Markets

Cc-3 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

B. CAN Basics

As CAN implementations increased in the automotive industry, High-speed
CAN and Low-speed CAN were standardized internationally as ISO 11898.
Single wire CAN was later developed as a lower cost, lower speed solution
for comfort devices.

Benefits of CAN

CAN Specifications

Lower cost from reduced wiring compared to two wire, point-to-point
wiring

Highly robust protocol

— Built-in determinism

— Fault tolerance

— Reliable—More than a decade of use in the automotive industry

CAN data (up to 8 bytes in a frame)

Maximum 1 Mbaud/s

40 Meters at 1 Mbaud/s

6 km at 10 kbaud/s

Theoretical maximum of 2,032 nodes per bus

— Practical limit is approximately 100 nodes due to transceiver
— Most buses use 3—10 nodes

Data fields—Arbitration ID (11 bit or 29 bit)

— Indicates message priority

Types of CAN

LabVIEW Introduction Course Manual

High Speed CAN

— Upto 1 M bits/s transmission rate
Low Speed/Fault-Tolerant CAN

— Up to 125 kbaud/s transmission rate
— Fault tolerant

Single Wire

— Up to 83.3 kbaud/s

— High-voltage pulse to wakeup sleeping devices

c-4 ni.com

CAN Frame

Appendix G CAN: Controller Area Network

NI CAN Interface Devices

National Instruments provides four types of CAN interface devices that use
the NI-CAN API described in this chapter. Each category of devices
supports multiple form factors and is available in one or two port varieties.

High-speed CAN
* 1 and?2 ports
* Maximum baud rate of 1Mb/s

Low-speed CAN
* 1 and?2 ports
e Maximum baud rate of 125 kbaud/s

Software Selectable CAN

* 1 and 2 ports (each port can be used as high-speed, low-speed, or
single-wire CAN)

Single Wire CAN
* 1 and?2 ports
e Maximum baud rate of 83.3 kbaud/s

CAN devices send data across the CAN Network on packets called frames.
A typical CAN frame contains an arbitration ID, a data field, a remote
frame, an error frame and an overload frame.

Standard Frame Format
11-Bit R

S
E

Arbitration ID R

| A
T|D DLC | 0-8 DataBytes |16-Bit CRC |C | End of Frame
E K

Extended Frame Format

High 11-Bits |
of Arbitration ID

S
O
F

Low 10-Bits
of Arbitration ID |

A
DLC | 0-8 Data Bytes | 16-Bit CRC|C | End of Frame
K

e R o)

|
D
E

Figure C-3. Standard and Extended CAN Frames

Arbitration ID

The arbitration ID is used to determine the priority of the messages on the
bus. If multiple nodes try to transmit a message onto the CAN bus at the
same time, the node with the highest priority (lowest arbitration ID)
automatically gets bus access. Nodes with a lower priority must wait until

© National Instruments Corporation Cc-5 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

the bus becomes available again before trying to transmit again. The waiting
devices wait until the end of the frame section is detected.

Device A transmits
ID=1100100 0111 (647 hex)

1100|T|000 111

Device B transmits
ID=110 1100 0111 (6C7 hex)

11]0]1!

Device B loses and goes idle until end of frame
Device A wins, and proceeds

Figure C-4. CAN Arbitration

Data Field

The data field contains the actual data being transmitted. The CAN protocol
supports two data field formats as defined in the Bosch Version 2.0
specifications, the essential difference being in the length of the arbitration
ID. In the standard frame format (also known as 2.0A), the length of the ID
is 11 bits. In the extended frame format (also known as 2.0B), the length of
the ID is 29 bits.

In NI-CAN terminology, a data field for which the individual fields are
described is called a message. A message can contain one or more channels,
which contain the data and other relevant information. In Figure C-5, the
ABS message contains two channels—Temperature and Torque.

Message Overview:

7 6 5 4 3 2
71615|4[3]|2
15[14]13]|12[11]10
23(22|21120(19(18
31/30(29|28 |27 |26
71615|4[3]|2
15[14]13]|12[11|10

N —
»|o(R|5|olo| o

NO O~ WN=O

CAN Data Frame

|0x85 | oo |Temperature | RPMs| | oo |
I_l_l | 4 bytes 2 bytes |
Arbitration T
ID Data Field (8 bytes)

Figure C-5. CAN Message with Two Channels.

LabVIEW Introduction Course Manual Cc-6 ni.com

Exercise C-1
Goal

Appendix G CAN: Controller Area Network

Concept: CAN Device Setup

Connect CAN hardware and use MAX to view and test a CAN device.

Description

The exercises in this appendix use a 2-port CAN interface device and a CAN
Demo Box. In this exercise, you set up your hardware, observe the
configuration of the CAN device in MAX, and run a self-test to verify that
the device functions correctly.

1.

2.

© National Instruments Corporation

Connect the CAN hardware.

Q

Q

Connect Port 1 on your CAN interface to the CAN input on the
CAN Demo Box using a CAN cable.

Connect the cable from your DAQ device to the 68-pin terminal on
the CAN Demo Box.

Use a wire to connect the following terminals on the CAN Demo
Box.

— Gen terminal of the Function Generator
— Ch 0 terminal of the Analog In to CAN

Explore the CAN device and ports in MAX.

Q

Q

Launch MAX.

Expand Devices and Interfaces. The PCI-CAN/2 device is your
CAN Interface Device.

Expand PCI-CAN/2. CANO and CANI are physical ports on your
CAN device. A single port interface has only one item.

c-7 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

O Select CANO and click the Properties button to display the Port
Properties dialog box.

Port Properties
Settings
Interface m
Baud Rate | 125 ~| kBaud

Advanced »

0k | Cancel ‘ Help ‘

Figure C-6. Port Properties Dialog Box

@ Note The Port Properties dialog box allows you to change the baud rate and other
properties of the CAN Interface. The settings are already correct for the current
configuration. You also can access the Port Properties dialog box by right-clicking a
port and selecting Properties from the shortcut menu.

4 Click OK to close the dialog box.
3. Test the CAN Interface Device.

U Select PCI-CAN/2 and observe the value of the Test Status
property. The Test Status property displays Untested until you
execute a self-test.

O Click the Self-test button located above the list of properties.

O Observe the value of the Test Status property after the test
completes. Also notice that a small blue circle with a white check
appears above the bottom right corner of the PCI-CAN/2 icon in the
Configuration tree, indicating that the device has passed the self-test.

End of Exercise C-1

LabVIEW Introduction Course Manual Cc-8 ni.com

Appendix G CAN: Controller Area Network

C. Channel Configuration

You can configure Channels in MAX to enable LabVIEW to interpret your
data fields. MAX allows you to load a set of channels from a database file
or configure channels manually.

CAN Databases

To translate the data field into usable data, a CAN device comes with a
database that describes the channels contained in the message. A CAN
Database File (CANdb File) is a text file that contains this information. It
allows you to find the data in a frame and convert it to engineering units. For
each channel, CAN databases store the following data.

Channel name

Location (Start bit) and size (number of bits) of the

Channel within a given Message

Byte Order (Intel/Motorola)

Data type (signed, unsigned, and IEEE float)

Scaling and units string

Range

Default Value

Comment

With many software programs, you must manually convert the data field to
usable data using the information contained in the database file. However,

using National Instruments software, this conversion is done for you. You

can load the channel configuration from the file into MAX, and then use it
in your application through the NI-CAN driver.

Loading Channels From a Database

To import channel configurations from a Vector CANdD file into MAX,
right-click the CAN Channels heading and select Import from CANdb
File. <Shift>-click to select multiple channels, then select Import. If you
need to select another set, you can select the channels and then import them
again. When you finish importing, click Done to return to MAX.

@ Note You also can access a CAN database directly from the LabVIEW CAN APL
However, loading the channels into MAX prevents you from having to specify a path in
your LabVIEW programs and allows you to read and write from the channels using the
MAX test panels.

© National Instruments Corporation Cc-9 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

@ CAM Channels - Measurement & Automation Explorer g@
File Edit Wiew Tools Help
Confi guration ~ || Create Message i Save Channel Configuration | +®Load Channel Configuration ** éQShow Help
= @ My System
< Data Meighborhood Message Narme Arh, ID Database Mame
% I T

L Die Create Message

+ (3 5 {% Expand Channels
+ Sc
[
+ Y1
+ @ Remat +@g Save Channel Configuration

Collapse Channels

#@ Load Channel Configuration
Impart From CANdb File

[l Delets Al Channels

g2 Cptions

Bl Zend to RT System
[T

Meszages | "B Al Channels

Import From CANdb File

Figure C-7. Importing a CAN Database File In MAX

Explicitly Creating a Channel

If no database file exists, you can create channels in MAX. Complete the
following steps to create channels within MAX:

1. Right-click the CAN Channels heading under Data Neighborhood and
select Create Message.

2. Enter the message properties and click OK. After the message is
created, it appears under CAN Channels.

3. Right-click the message name and select Create Channel. A
configuration box appears similar to the one shown in Figure C-8. As
you enter information about Start Bit and No. of Bits, the matrix is
populated with dimmed boxes to indicate the bits that have already been
used in channel definitions for that message. Blue boxes indicate the bits
that are currently being defined.

LabVIEW Introduction Course Manual c-10 ni.com

Appendix G CAN: Controller Area Network

CAM Channel Properties

Charrel Mame |Temperature Gauge 0k, |
StaBit [0 = MoofBits[8 - Cancel
Byte Order m Help
Data Type m
Scaling Factor |0.400000

Scaling Offzet |0.00000 test3 [Ow0]:
7 E 6 43 2 10D
Mirirmurn Yalue |100.000 N7 [6[5[a[alzl1]0
1
Maimurn alue [0.00000 :
4
Drefault Walue |0.00000 [
3
Unit [Rd 7
Comment:

Figure C-8. Explicit Channel Configuration in MAX

Enter the channel properties and click the OK button.

Right-click and select Create Channel again for each channel
contained in the message.

6. To save channel configurations to a file, right-click the CAN Channels
heading and select Save Channel Configuration.

Saving the channel configuration creates a custom database file for your
device. The resulting NI-CAN database file uses file extension .ncd. You
can access the NI-CAN database just like any other CAN database. By
installing the NI-CAN database file along with your application, you can
deploy your application to a variety of users.

You can also test explicitly created channels using the Channel Test Panel.

© National Instruments Corporation c-11 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

Exercise C-2 Channel Configuration

Goal
Learn how to load and test channels in MAX.
Description
Load channels from either an NI CAN database file or a Vector CAN
Database file into MAX. Investigate the properties of messages and
channels. Read data on a specific channel using MAX Test Panels. Finally,
use the built-in CAN Bus Monitor feature in MAX to monitor the frame data
being sent along the CAN bus.
1. Launch MAX and expand Data Neighborhood.
2. Load the database file for the CAN Demo Box.
Q Right-click CAN Channels and select Import from CANdb File.
EACAN Channels - Measurement & Automation Explorer g@
File Edit Wiew Tools Help
Confi guration ~ || Create Message i Save Channel Configuration | +®Load Channel Configuration ** éQShow Help
= @ My System
< Data Meighborhood Message Narme Arh, ID Database Mame
% I T

L Die Create Message

+ (3 5 {% Expand Channels

+ Sc

+ Y1

+ @ Remaot @ Save Channel Configuration
#@ Load Channel Configuration

-5

Collapse Channels

Impart From CANdb File
[l Delets Al Channels

o Options

mo

¥
Bl Zend to RT System —

'|'—|;| ressages | = Al Channels

Import From CANdb File

O Navigate to C: \Exercises\LabVIEW Basics I\CAN\
CAN Demo Box.dbc.

@ Tip You could choose to import the . ndc database files instead. To do so, select Load
Channel Configuration instead of Import from CAN db File.

O Select Add All Messages and Channels.

LabVIEW Introduction Course Manual c-12 ni.com

Q Click Import.
U Click Done.
Test a channel in MAX

Q

Appendix G CAN: Controller Area Network

Expand CAN Channels. A list of messages with predefined

channels appears. Use these channels to communicate with your
CAN Demo Box through your CAN Interface.

Expand the message

WAVEFORMO_SAW0_SWITCHES_FROM_CDB (0x710) to
see the channels in that message, as shown in Figure C-9.

@ WAVEFORMO_SAWO_SWITCHES_FROM_CDB (0x710) - Measurement & Automation Explorer

File Edit Wew Tools Help

Configuration

= @ My System
= Data Meighborhood

=@ ©AM Channels
SET_LCD_DISPLAY (0x763)
SET_LCD_COMTRAST (0%768)
SET_FUMC_GEN_FREQ (0x767)
SET_FUNC_GEM_OUTPUT (0x766)
SET_BALD_RATE (0%765)
SET_PERIODIC_RATE (0%763)
SET_BAR_GRAPH_MODE (0x761)
SET_CDB_TRAMNSMIT (0:760)
WAYEFORM _DIGITAL TO_CDE (0x%750)
STRING_RESPORNSE_FROM_CDE (0x740)
STRING_REQUEST_TO_CDE (0x%730)
WAVEFORML_SAWL_FROM_CDE (0x720)
WAVEFORMO_SA&WO_SWITCHES_FROM_CODB (07100

FB Switch3

A8 switchz

A8 Swikchi

FE Switchi

B sawkoothi

A8 AnalogInTaCANCHD
+ Devices and Interfaces
L. [%A Srales

B Create Channel Duplicate Delete »| g show Help
Atkribute | Yalue | Description
B Message Mams WANVEFORMO_S,,. Message name assigns
B Database CAM Demo Box.... Mame of the Filz the m
B Interface ARY Defaulk MI-CARN interfe
B ~rbitration 10 0x710 Arhitration ID
@ Frame Format Standard (11 Bit) Frame Format (lenagth o
B Data Bytes 3 Murnber of data bytes
B comment
CAM Mezzage Properties I

© National Instruments Corporation

Figure C-9. WAVEFORMO_SAWO0_SWITCHES_FROM_CDB (0x710) Message

O Select the AnalogInToCANChO0 channel.

U Click the Test Panel button.

menu.

Tip You also can right-click the channel name and select Test Panel from the shortcut

O Click the Read tab if it is not already selected.

c-13

LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

O Click the Start button to begin reading continuously. If the test panel
is already reading when you open it, the start button is disabled and
you do not need to click it.

HICAN Channel Test Panel

NATIONAL
INSTRUMENTS

Channel Paramsbers
WAVEFORMO_S

AnaloginTaCANC

Meszage:

Charinet:

CAN Part Palameters

Inkerface:
-
Scan Pasameters
Sample Rate: | Hz
Scaling: " Fived
& Bug

Read | wiite |

10

Walus

Emar: i)
e

Help

Last Value:
|9.35687

i

Stop

Close

¥

scaling to Auto.

Tip A periodic signal should appear. You can see the signal better by changing the

O Experiment with changing the settings on the demo box itself. Use
the Menu Select button to scroll through the different options.

— Click the Menu Select button until you see Func Gen Output.

— Click the <+> and <-> buttons to change which type of signal is
being output by the Function Generator. Select from the
following choices—Sine, Square, and Triangle. The screen
displays which type is currently being output.

— Click the Menu Select button again until you see Func Gen Freq.

— Click the <+> and <-> buttons to increase and decrease the
frequency of the signal being output by the Function Generator.

O Click the Stop button in the MAX test panel to finish reading.

U Click the Close button to exit the Test Panel.

4. Monitor the CAN bus

O Expand My System»Devices and Interfaces»PCI-CAN/2. If
selected, the device properties display in the window to the right.

U0 Expand PCI-CAN/2 and select CANO. On the right, notice a list of

attributes.

LabVIEW Introduction Course Manual

c-14

ni.com

© National Instruments Corporation

Q

Q

Appendix C CAN: Controller Area Network

Click the Bus Monitor button located above the attributes.

Click the Start button to begin monitoring the CAN bus. If
monitoring is already active, a Stop button appears in place of the
Start button and you need not click a button.

2 MI-CAM Busbionitar

A Pl Setlings Updat= Rate
NATIONAL
ﬂmnummg CAN Intestace < | Baoud Rate : | [100 =] me
Aib.|D | Lengih | Data [Time Stamp | Aate | dtMin | di Max [#otal | Help
1808 3 DIEAD 108903 53,77 BE2e004 1.088e-002 1030
1324 3 SCO302 10ET7ET 1399 2415002 G0O07e.002 219
Buzs Stalistics
Ennor Detals
e
Stop
Reset
Figure C-10. NI-CAN Bus Monitor
Q Unplug the connector between the CAN Interface and your demo

Q

Q

box. The monitor ceases to show any transmissions because there is
nothing being sent either to or from the bus.

Plug in the connector between the CAN Interface and your demo
box. Notice periodic transmissions because the demo box is
constantly transmitting to and receiving from the CAN Interface.

Click the Stop button.

Click the Reset button.

Save the bus monitor activity to file.

Q

Q
Q
Q

Click the Options button.
Place a checkmark in the Stream To Disk checkbox.
Leave the remaining options at their default values.

To specify where to stream the data, click the File Name button in
the dialog box and navigate to a file path.

C-15 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

Q Click the OK button.

O Click the Start button to begin monitoring and logging.
U After a few moments, click the Stop button.

O Click the Close button to close the bus monitor.

6. Open the log file that you specified in the previous steps and view its
contents.

End of Exercise C-2

LabVIEW Introduction Course Manual C-16 ni.com

Appendix G CAN: Controller Area Network

D. CAN APIs

There are two APIs that you can use with NI-CAN hardware: Channel and
Frame.

* Channel API

— High level

— Easy-to-use physical units

— Easy CAN/DAQ synchronization

— Not compatible with NI-CAN 1.6 or lower
* Frame API

— Lower-level, advanced API

— Command/response protocol

— Advanced CAN/DAQ synchronization

— Compatible with all versions of NI-CAN

For a single NI-CAN port such as CANO, you can use only one API at a
time. For example, if you have one application that uses the Channel API
and another application that uses the Frame API, you cannot use CANO with
both at the same time. If you have a 2-port CAN card, you can connect
CANO and CANT1 to the same CAN network, then use CANO with one
application and CAN1 with the other. Alternately, you can use CANO for
both applications, but run each application at a different time. In most cases,
you should use the Channel API, as it simplifies programming and reduces
development time. However, there are some situations in which the Frame
API is necessary; for example:

* You are maintaining an application developed with NI-CAN version 1.6
or lower. The Frame API is compatible with code developed in early
CAN versions.

* Youneed to implement a command/response protocol in which you send
a command to the device, and then the device replies by sending a
response. Command/response protocols typically use a fixed pair of IDs
for each device, and the ID does not determine the meaning of the data
bytes.

* Your devices require use of remote frames. The Channel API does not
provide support for remote frames, but the Frame API has extensive
features to transmit and receive remote frames.

* You have advanced requirements for synchronizing CAN and DAQ
cards. The Frame API provides RTSI features that are lower level than
the synchronization features of the Channel APIL.

@ Note This course covers only the Channel API.

© National Instruments Corporation c-17 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

E. CAN Programming in LabVIEW (Channel API)

CAN Init Start VI

CAN Get Names VI

The basic NI-CAN program consists of an initialization and start, a read or
write data, and a clear. A Get Names VI is also frequently used to access the
list of channels names in a database.

The link between the functions is the task reference. A CAN task is a
collection of CAN channels that have identical timing and the same
communication direction—read or write. A task can encompass several
messages, but they must all be on the same interface, or port.

This VI initializes a task for the specified channel list and starts
communication. The mode input determines whether the task is configured
to read or write.

Filepath R
channel list il Thsn Lask reference out
inkerface ﬁﬁ
mode Jpecceooaea gy gr Uk
sample rake
errar in (na errar)

Figure C-11. CAN Init Start VI

This VI gets an array of CAN channel names or message names from MAX
or a CAN database file. If you leave the file path input unwired, the channel
names are retrieved from MAX. Otherwise, they are retrieved from the
database file you specify. The mode input determines whether you are
accessing channel names or message names.

mode
! THER channel lisk
Filepath ::T
MEessage name HAMES errar ouk
error in (no error)

Figure C-12. CAN Get Names VI

There are three ways to access channels in your application.
* specify a channel name that has been imported into MAX
» specify a database file and channel name for channels not in MAX

» use the CAN Get Names VI to pull in all channels in a database file

To directly access a CAN channel from a CAN database, specify the channel
name with the database path as a prefix. For example, if you are using a

LabVIEW Introduction Course Manual c-18 ni.com

Appendix G CAN: Controller Area Network

channel named SwitchO in the C: \CAN Demo Box.DBC CAN Database,
pass C: \CAN Demo Box.DBC: :SwitchO to the Init Start function, as
shown in Figure C-13. This figure also demonstrates how to read a channel
available in MAX, and how to extract all channels from a database file.

13 Get Channels Example.vi F... g@ #

s

File Edit Yiew Project Cperate Tools J File Edit Wiew Project Operate Tools Window Help
bl s

A

:{>]@] @ 13pt Application A 2 .4)]@] IE“,DiIE’- |13pt application Fark

S

Rimg
alSwitchD
: CustomBTRO || [Read a channel from Max]

BaudR.ateType
DelayMultiplier m ISwitchD : [
CAN_DAQDisplavBargraphMaode [
TransmitType
CAN_DACQDisplavDigital3
CAN_DAQDIsplayDigitalz [Read a channel From a database]
CAN_DAQDisplavDigitall
CAN_DAGDisplayDigitaln C:'I,CF\N Demo Box.dbc:: Switchd | CRE
CAN_DAQDisplavCANEargraph
StringCharackerd
StringCharacker3
StringCharacterz
StringCharacter1
StringCharacker0

SkringR. {4
ringreques |LCACAN Demo Bosx,dbc il Test
Samtoothl RtES

analogInToCANCh1
Switch3
Swikchz
Swikchl
& Switcho
Sawtoothn
AnalogInToCaNChO ™

[Read all channels from a database|

<] B\ A (>

Figure C-13. Specifying Channels in LabVIEW

CAN Read

This VI reads samples from an input CAN task. Samples are obtained from
received CAN messages. Right-click the icon and select Select Type from
the shortcut menu to choose the output data type.

kask reference in [vese | kask reference out
rumber of samples o read - READ L rmber of samples returned
Error in (no error) ’""Lmsingle-chan single-samp dhbl
errar aut

Figure C-14. CAN Read VI

© National Instruments Corporation c-19 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

CAN Write

This VI writes samples to an output CAN task. Samples are placed into
transmitted CAN messages. Right-click the icon and select Select Type
from the shortcut menu to choose the write data type.

kask reference in [iTesk | kask reference out
nurmber af samples ko owrite LIRITE
single-chan single-samp dbl }m efror out

Errar in (no error)

Figure C-15. CAN Write VI

CAN Clear

This VI stops communication for the task and clears the configuration.

task reference in i ek
. CLEAR
error in (no error) peeeen @ or ok

Figure C-16. CAN Init Start VI

LabVIEW Introduction Course Manual c-20 ni.com

Appendix G CAN: Controller Area Network

Exercise C-3 Read and Write CAN Channels

Goal
Read and write channels from the CAN device using LabVIEW.

Description
Complete a VI that reads a single value at a time from the CAN Interface
and graphs it on a chart. The channel being read is Analog Input on Channel
0 of the CAN Demo box.

@ Note Before beginning this exercise, load the CAN Demo Box.ncd or
CAN Demo Box.dbc database into MAX. Also, wire the Function Generator Gen
output to the Analog In To CAN Ch0 input on the CAN demo box. You completed these

steps in a previous exercise.

Part A: Read a Single Channel
1. Open Read CAN Channels VI, located in the C: \Exercises\
LabVIEW Basics I\CAN directory.

In the following steps, you complete the block diagram shown in
Figure C-17.

waveform Chart
»

channel list
I[alu Mrocooconog

interface

gy b
|Single-Chan Single-Samp Dbl ""

LB Tetans -

E-} -----
|
i

Figure C-17. Read CAN Channels VI Block Diagram
2. Add the CAN Channel VIs to the block diagram.

e Q Add the CAN Init Start VI to the block diagram to the left of the
AL While Loop.

O Right-click the channel list input of the CAN Init Start VI and select
Create»Control.

© National Instruments Corporation c-21 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

O Right-click the interface input of the CAN Init Start VI and select
Create»Control.

U Right-click the mode input of the CAN Init Start VI, select Create»
Constant.

A Select Input from the mode enum constant.

i Teer 0 Add the CAN Read VI to the block diagram inside the While Loop.

RERD

O Right-click the CAN Read VI and select Visible Items»
Polymorphic VI Selector.

@ Note Selecting the menu item toggles it on and off, and a check mark indicates whether
itis selected.

O Select Single-Chan Single-Samp Dbl from the pull-down menu on
the CAN Read VI.

@ Tip You also can accomplish this by right-clicking the VI and selecting Select Type»
Single-Chan Single-Samp Dbl from the shortcut menu.

Qe O Add the CAN Clear VI to the block diagram to the right of the
A While Loop.

3. Wire the block diagram as shown in Figure C-17.
4. Switch to the front panel.
5. Test the VL.

O Set the interface control to CANO.

O Enter AnalogInToCANChHO into the first array element of the
channel list control.

@ Tip You also can drag the name of the channel into the array element from MAX. The
channel is found in the message WAVEFORMO_SAW0_FROM_CDB (0x710).

U Run the VI.

O Experiment with CAN Demo Box. Change the signal time and
frequency. Notice the changes taking effect on your chart.

LabVIEW Introduction Course Manual c-22 ni.com

Appendix G CAN: Controller Area Network

Your front panel should resemble the following figure.

AnaloginTocancho AN

intetface ‘Waveform Chart

Hcann
=

channel list

,Il 1
710 WanalogInTaCANChD

Armplitude

el Time

Figure C-18. Read CAN Channels VI Front Panel
Q Click the Stop button to terminate the program.

6. Save the VI as Read CAN Channels.vi inthe C:\Exercises\
LabVIEW Basics I\CAN directory.

Part B: Read Two Channels
Modify the VI to read a second channel, Switcho.

1. Add a second channel to the front panel of the Read CAN Channels VI.

AnaloginTocancho EENg

T witaweform Chart

lcamn
=

channel list

J’ i1
710 VanslaginTaCARChO
ISwitchD

Mumeric
40

Amplitude

el Time

Figure C-19. Read CAN Channels (Multiple) VI Front Panel

O Expand the number of array elements visible on the channel list
control on the front panel of the Read CAN Channels VI.

U Enter switcho0 into the second array element of the channel list
control.

U Add numeric indicator to the front panel.

© National Instruments Corporation Cc-23 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

2. Modify the block diagram as shown in Figure C-20 to display the second
channel.

waveform Chart

E— wt O L3

-t

charnel list .J' =

I[.nu Mpoocananag Murneric

interface

I TSk [

READ

=~}
[Multi-Chan Single-Samp 10 Dbl ~]|

Figure C-20. Read CAN Channels (Multiple) VI Block Diagram
U Switch to the block diagram.

U Delete the wire between the output of the CAN Read VI and the
waveform chart.

Q Select Multi-Chan Single-Samp 1D Dbl from the pull-down menu
that appears below the CAN Read VI (the polymorphic VI selector).

@ Note This specifies that the VI should read an array of doubles, one from each channel,
every time that it executes.

O Add an Index Array function to the block diagram.

O Using the cursor, drag the border of the Index Array function to
expand its size so that it returns two array elements instead of one.

Q Wire the multi-chan single-samp 1D dbl output array from the
CAN Read VI to the array input of the Index Array function.

O Right-click the index0 input of the Index Array function and select
Create»Constant.

O Right-click the index1 input of the Index Array function and select
Create»Constant.

U Enter 1 in the second constant.

LabVIEW Introduction Course Manual Cc-24 ni.com

Q

Appendix G CAN: Controller Area Network

Connect the first output element of the Index Array function to the
waveform chart indicator terminal and the second output element
to the SwitchQ indicator terminal.

3. Save the VI as Read CAN Channels (Multiple) .vi inthe
C:\Exercises\LabVIEW Basics I\CAN directory.

4. Switch to the front panel.

5. Test the VI.

Q

Q

Run the VI. While it is running, experiment with changing the
properties of the function generated by the CAN Demo Box.

Experiment with changing the state of SwitchQ as well. As you
toggle the switch (Digital Input 0) on the CAN Demo Box, notice
that the value of the numeric indicator changes as you toggle the
switch on the CAN Demo Box.

6. Use another VI to modify the frequency of the waveform generated by
the demo box.

Q

Q

Open the Write CAN Channels VI, found in the C: \Exercises\
LabVIEW Basics I\CAN directory.

Ensure that the channel list has one element with the channel name
FunctionGeneratorFrequency.

Set the interface control to CANO.
Run the CAN Read Channels VI and the CAN Write Channels VI.

Experiment with changing the Frequency Value control on the CAN
Write Channels VI and see how it affects the chart for the CAN Read
Channels VI.

7. Terminate the execution of both VIs by clicking their Stop buttons.

End of Exercise C-3

© National Instruments Corporation

C-25 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

Exercise C-4 Synchronize CAN & DAQ

Goal
Synchronize CAN and DAQ inputs in the LabVIEW environment.

Description

There are two CAN and DAQ acquisitions inputting data simultaneously.
Both the acquisitions are buffered, meaning that the timing is handled on the
interface devices. Explore a VI that synchronizes the inputs by routing the
clock signal from one of the devices to the other using a RTSI (Real-Time
Serial Interface) cable to connect the two.

1. Open the Sync CAN & DAQ VI located in the C: \Exercises\
LabVIEW Basics I\CAN directory.

2. Switch to the block diagram. It is shown in Figure C-21.

3. Explore the block diagram. Notice that this VI reads from both the CAN
and DAQ interfaces and uses RTSI to synchronize the timing.

RTSI terminal
| umﬂ

CAN Channel List

Bl Dl

CLEAF LI
FI0AL

samples per channel

| 100 I
Continuous Samples ~

Waveform Chart
£l

sample rate
)

DAQ Channel

vl

Sample Clock ~ Analog 10 Wim _

MChan M3amp

stop
m E

Figure C-21. Sync CAN & DAQ VI Block Diagram
4. Switch to the front panel.
5. Set the control values:
O Interface: CANO
Q Channel List: AnalogInToCANChO

Q Physical channels: Devl/ai0

LabVIEW Introduction Course Manual C-26 ni.com

Appendix G CAN: Controller Area Network

O RTSI Terminal: RTSIO
Q Sample Rate: 1000.00

6. Onthe CAN Demo Box, attach two wires to jumper between the output
of the Functions Generator, the input Analog In to CAN Ch0, and the
input Analog In to DAQ Ch0.

7. Run the VI. Notice that the signals read from the CAN interface and the
DAQ device are perfectly synchronized. To terminate the VI, click the
Stop button.

8. Close the VI when you are finished.

End of Exercise C-4

© National Instruments Corporation c-27 LabVIEW Introduction Course Manual

Self Review: Quiz

Appendix G CAN: Controller Area Network

1.

© National Instruments Corporation

Which one of the following is the maximum transmission rate of Low
Speed or Fault-tolerant CAN?

a.
b.
c.
d.

1 Mbaud/s

83.3 kbaud/s
256 kbaud/s
125 kbaud/s

NI-CAN channels are used for which one of the following reasons?

a.

They allow associating bits/bytes of a CAN message/frame with
meaningful names and scaling information.

They allow access to the CAN message/frame in its entirety.
They allow access to the CAN physical bus channel.

They allow associating different types of CAN frames with user
defined names.

The NI-CAN Frame API is used for which of the following reasons?
(multiple answers)

a.
b.

C.

It allows complete control of CAN frame communication on the bus.
It simplifies programming and reduces development time.

It allows advanced synchronization with National Instruments DAQ
devices.

It allows you to use both the Frame API and the Channel API on the
same CAN device/node.

Cc-29 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

Self Review: Quiz Answers

1.

© National Instruments Corporation

Which one of the following is the maximum transmission rate of Low
Speed or Fault-tolerant CAN?

a. 1 Mbaud/s

b. 83.3 kbaud/s
c. 256 kbaud/s
125 kbaud/s

i

NI-CAN channels are used for which one of the following reasons?

a. They allow associating bits/bytes of a CAN message/frame with
meaningful names and scaling information.

b. They allow access to the CAN message/frame in its entirety.
c. They allow access to the CAN physical bus channel.

d. They allow associating different types of CAN frames with user
defined names.

The NI-CAN Frame API is used for which of the following reasons?
(multiple answers)

a. It allows complete control of CAN frame communication on the
bus.

b. It simplifies programming and reduces development time.

c. It allows advanced synchronization with National Instruments
DAQ devices.

d. Itallows you to use both the Frame API and the Channel API on the
same CAN device/node.

c-31 LabVIEW Introduction Course Manual

Appendix G CAN: Controller Area Network

Notes

LabVIEW Introduction Course Manual c-32 ni.com

Additional Information and Resources

This appendix contains additional information about National Instruments
technical support options and LabVIEW resources.

National Instruments Technical Support Options

Visit the following sections of the National Instruments Web site at ni . com
for technical support and professional services.

Support—Online technical support resources at ni . com/support
include the following:

Self-Help Resources—For answers and solutions, visit the
award-winning National Instruments Web site for software drivers
and updates, a searchable KnowledgeBase, product manuals,
step-by-step troubleshooting wizards, thousands of example
programs, tutorials, application notes, instrument drivers, and so on.

Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

For information about other technical support options in your area,
visit ni.com/services or contact your local office at
ni.com/contact.

System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. The NI Alliance Partners joins
system integrators, consultants, and hardware vendors to provide
comprehensive service and expertise to customers. The program ensures
qualified, specialized assistance for application and system
development. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni . com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit the
Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation

D-1 LabVIEW Introduction Course Manual

Appendix D Additional Information and Resources

Other National Instruments Training Courses

National Instruments offers several training courses for LabVIEW users.
These courses continue the training you received here and expand it to other
areas. Visitni . com/training to purchase course materials or sign up for
instructor-led, hands-on courses at locations around the world.

National Instruments Certification

Earning an NI certification acknowledges your expertise in working with
NI products and technologies. The measurement and automation industry,
your employer, clients, and peers recognize your NI certification credential
as a symbol of the skills and knowledge you have gained through
experience. Visit ni.com/training for more information about the NI
certification program.

LabVIEW Resources

This section describes how you can receive more information regarding
LabVIEW.

LabVIEW Publications

The following publications offer more information about LabVIEW.

LabVIEW Technical Resource (LTR) Newsletter

Subscribe to LabVIEW Technical Resource to discover tips and techniques
for developing LabVIEW applications. This quarterly publication offers
detailed technical information for novice users and advanced users. In
addition, every issue contains a disk of LabVIEW VIs and utilities that
implement methods covered in that issue. To order the LabVIEW Technical
Resource, contact LTR publishing at (214) 706-0587 or visit

www . ltrpub.com.

LabVIEW Books

Many books have been written about LabVIEW programming and
applications. The National Instruments Web site contains a list of all
the LabVIEW books and links to places to purchase these books.

info-labview Listserve

info-labview is an email group of users from around the world who
discuss LabVIEW issues. The list members can answer questions about
building LabVIEW systems for particular applications, where to get
instrument drivers or help with a device, and problems that appear.

LabVIEW Introduction Course Manual D-2 ni.com

Appendix D Additional Information and Resources

To subscribe to info-labview, send email to:

info-labview-on@labview.nhmfl.gov

To subscribe to the digest version of info-labview, send email to:

info-labview-digest@labview.nhmfl.gov

To unsubscribe to info-labview, send email to:

info-labview-off@labview.nhmfl.gov

To post a message to subscribers, send email to:

info-labview@labview.nhmfl.gov

To send other administrative messages to the info-labview list manager,
send email to:

info-labview-owner@nhmfl.gov

You might also want to search previous email messages at:

www . searchVIEW.net

The info-labview web page is available at:

www.info-labview.org

© National Instruments Corporation D-3 LabVIEW Introduction Course Manual

Index

A B
ADC, 8-15 block diagram, 2-19
adding files to projects, 2-10 automatic wiring, 2-24
algorithims, designing, 1-3 controls, indicators, and constants
aliasing (figure), B-16 (figure), 2-21
alignment and spacing, 4-5 creating cluster constants, 5-15
analog input data flow, 2-43
task timing, 8-15 documenting code (figure), 4-18
task triggering, 8-16 figure, 2-19
analog output, 8-22 nodes, 2-22
DAC, 8-23 toolbar, 2-26
task timing, 8-22 wiring automatically, 2-24
task triggering, 8-23 wiring to charts, 4-51
analog-to-digital conversion, 8-15 block diagram window, 2-2
analysis block diagrams, nodes, 2-22
categories, A-4 Boolean
inline versus offline, A-2 controls and indicators, 2-14, 2-15
programmatic versus interactive, A-3 figure, 2-15
applications, developing modular, 7-1 values, 4-11
arrays, 5-2 Booleans
2D, 5-3 mechanical actions (figure), 4-6, 4-12
auto-indexing, 5-4 Breakpoint tool
creating 2D arrays using conditional breakpoints with probes, 3-15
auto-indexing, 5-6 debugging VlIs, 3-15
creating constants, 5-4 breakpoints, 3-15
creating controls and indicators, 5-3 broken VIs
dimensions, 5-2 causes, 3-9
examples of 1D arrays, 5-2 common causes, 3-10
examples of 2D arrays, 5-3 correcting, 2-49, 3-9
initializing, 5-4 displaying errors, 3-9
outputs, 5-6 building Vs, 2-46
restrictions, 5-2 acquire, 2-47
auto-indexing analyze, 2-47
creating 2D arrays, 5-6 present, 2-48
using to set For Loop count, 5-5 Bundle By Name function, 5-17
automatic wiring, 2-24 Bundle function, 5-17

© National Instruments Corporation -1 LabVIEW Introduction Course Manual

Index

C

callers
chain of, 3-17
displaying, 3-17
captions and labels, 4-2
Case structures, 4-61
Boolean cases, 4-64
changing case views (figure), 4-62
enum cases, 4-65
error cases, 4-66
executing, 4-61
integer cases, 4-64
selecting cases, 4-62
specifying a default case, 4-61
string cases, 4-65
certification (NI resources), D-2
chain of callers
displaying, 3-17
chart update mode (figure), 4-51
charts
update mode, 4-50
figure, 4-51
waveform, 4-50
figure, 4-50
wiring, 4-51
clusters, 5-14
assembling from individual
elements, 5-17
constants, 5-14
creating, 5-14
creating constants, 5-15
disassembling, 5-18
error, 3-19, 5-19
order, 5-15
order of elements, 5-15
reordering (figure), 5-16
replacing or accessing elements, 5-17
using fuctions, 5-16
wire patterns, 5-14
code, documenting, 4-17
coercion
For Loops (figure), 4-38
numeric data, 4-37

LabVIEW Introduction Course Manual -2

colors, 4-4
communicating with instruments, 9-29

serial, 9-3, C-10

VISA, 9-23
conditional breakpoints

See probes
conditional terminals, 4-27
configuration software (Windows), 9-7
connector panel, 2-3
connector panes, 7-4

assigning terminals to controls and

indicators, 7-8

configuring, 7-7

modifying layout, 7-7

setting inputs and outputs, 7-9
constants

arrays, 5-4

clusters, 5-14, 5-15
Context Help window, 3-2

figure, 3-2

terminal appearance, 3-2, 7-9
control flow programming model, 2-43
control panels, limits, 7-10
controls, 2-13

assigning to connector pane, 7-8

custom, 5-25

numeric, 2-14

numeric (figure), 2-14

string display types, 4-13

type definitions, 5-27
controls and indicators

Boolean, 2-14, 2-15

figure, 2-15

creating arrays, 5-3

creating clusters, 5-14

defaults (figure), 4-3

designing, 4-2

figure, 4-3

limits, front panel, 7-10

naming, 4-18

numeric, 2-14

options, 4-3

showing terminals, 2-25

ni.com

controls palette, 2-15

controls, indicators, and constants, 2-20
conventions used in the manual, x

figure, 2-15

conversion, numeric, 4-37

correcting broken Vls, 2-49, 3-9

count terminals, 4-36
counters, 8-24
course

conventions used in the manual, x

goals, ix

requirements for getting started, viii

software installation, ix

creating clusters, 5-14
custom controls, 5-25

D

linking to a saved file, 5-27

DAC, 8-23

analog input, 8-15

DAQ

analog output, 8-22

analog-to-digital conversion, 8-15

configuring hardware, 8-6
counters, 8-24

DAC, 8-23

devices, 8-4

digital I/O, 8-28
NI-DAQ, 8-5

scales, 8-7

Signal Accessory, 8-3

simulated devices, creating, 8-8
simulated devices, removing, 8-8

simulating devices, 8-8
software architecture, 8-5
task timing, 8-22

task triggering, 8-23

terminal blocks & cables, 8-2
typical system (figure), 8-2

© National Instruments Corporation

data

acquiring, 8-1

disk streaming, 6-8

file formats, 6-2

measurement data, 6-1

numeric, A-1

plotting, 4-50

reading and writing, 6-2
figure, 6-2

relating, 5-1

undefined, 3-18

unexpected, 3-18

data coercion

numeric, 4-37
figure, 4-37

data transfer rate, 9-3

serial, 9-5

data transfer termination, 9-3
data transfer, iterative, 4-43
data types, 2-24, 4-9

Boolean values, 4-11

default values, 4-63

dynamic, 4-15

enums, 4-13

numeric, 4-9
floating-point, 4-10

numeric (figure), 4-10

strings, 4-12

terminals, 4-9

database access, 2-23
dataflow, 2-43, 3-12

figure, 2-44
observing, 3-12

dataflow programming model, 2-43

Index

LabVIEW Introduction Course Manual

Index

debugging

automatic error handling, 3-19

breakpoints, 3-15
broken VlIs, 2-49, 3-9
error handling, 3-19

execution, highlighting (figure), 3-12

Probe tools, 3-13

probes, 3-13
single-stepping, 3-13
suspending execution, 3-16

using execution highlighting, 3-12

using probes, 3-13

using the Breakpoint tool, 3-15
debugging and troubleshooting VlIs, 3-1

debugging techniques, 3-11
execution highlighting, 3-12
decorations, 4-8
default cases, 4-61
default probes, 3-14
design, 1-3
additional requirements, 1-3
algorithms, 1-3
flowchart, 1-4
inputs, 1-3
outputs, 1-3
state transition diagram, 1-5
techniques and patterns, 10-1

designing controls and indicators, 4-2
designing front panel windows, 4-2

device range
ADC precision, B-13
description, B-13
devices, simulating, 8-8

diagnostic tools (NI resources), D-1

dialog box
new (figure), 2-6
properties (figure), 2-17
property, 2-16
digital 1/0, 8-28
digital-to-analog conversion, 8-23
dimensions, arrays, 5-2
directory paths
See probes

LabVIEW Introduction Course Manual

disk streaming, 6-8
figure, 6-9
displaying
chain of callers, 3-17
errors, 3-9
documentation
LabVIEW Help, 3-3
NI resources, D-1
documenting code, 4-17
block diagrams (figure), 4-18
controls and indicators, 4-18
descriptions, 4-17
graphical programming, 4-18
tip strips, 4-17
VI properties, 4-17
drivers (NI resources), D-1
dynamic data types, 4-15

E
editing icons, 7-5
elapsed time, 4-42
Embedded Project Manager, 2-9
enhanced probes
See probes
enums, 4-13
enums (figure), 4-14
error handling, 3-19
using Case structures, 4-66
with While Loops, 4-29
error list (figure), 3-10
errors
automatically handling, 3-19
broken VIs, 2-49, 3-9
checking & handling, 3-19
clusters, 3-19, 3-20
codes, 3-19
displaying, 3-9
explaining, 3-20
finding, 3-9

ni.com

handling, 3-19
automatically, 3-19
using While Loops, 4-29
list, 3-9
methods to handle, 3-19
Run button, 2-49
window, 3-9
Example Finder. See NI Example Finder
examples (NI resources), D-1
execution
debugging Vs, 3-12
flow, 2-43
highlighting, 3-12
suspending, 3-16
suspending to debug Vs, 3-16
execution highlighting (figure), 3-12
explain error, 3-20

F
favorites, adding, 2-30
file I/O, 6-2

basic operation, 6-2
disk streaming, 6-8
overview, 6-4
refnums, 6-2
file I/O (figure), 6-2
files
formats, 6-2
LabVIEW Data Directory, 6-3
finding errors, 3-9
fixing VlIs, 2-49, 3-9
flow of execution, 2-43
flowcharts, designing, 1-4
fonts and text, 4-6
For Loops, 4-36
auto-indexing arrays, 5-4
coercion (figure), 4-38
count terminals, 4-36
figure, 4-36
iteration terminals, 4-36
setting count using auto-indexing, 5-5
stacked shift registers, 4-45

© National Instruments Corporation

Index

Formula Nodes, 4-72
entering C-like statements, 4-72
entering equations, 4-72
front pane window
array controls and indicators, 5-3
front panel (figure), 2-19
front panel window, 2-2, 2-13
creating cluster controls and
indicators, 5-14
figure, 2-13
toolbar, 2-17
front panel windows
designing, 4-2
object, resizing, 4-8
front panels, controls, indicators, and
constants (figure), 2-20
functions, 2-22
functions palette, 2-25
favorites, 2-30
figure, 2-26
furnace example, 1-4
figure, 1-4, 1-6

G
GPIB, 9-2
communicating with instruments, 9-29
configuration software (Windows), 9-7
data transfer rate, 9-3
data transfer termination, 9-3
interface (figure), 9-8
software architecture, 9-7, C-18
graphical programming, 4-18
graphs
configuring, 4-52
multiple-plot waveform, 4-53
single-plot waveform, 4-53
waveform (figure), 4-52
XY, 7-2
grouping
data in arrays, 5-2
data in clusters, 5-14
data in strings, 4-12

LabVIEW Introduction Course Manual

Index

H indicators and controls
hardware, 8-2 Boolean, 2-14, 2-15
configuring, 8-5, 8-6 ﬁgure, 2-15
DAQ devices, 8-4 creating arrays, 5-3
drivers, 8-5 creating clusters, 5-14
interfaces, other, 9-6 defaults (figure), 4-3
MAX, 8-6 designing, 4-2
NI-DAQ, 8-5 naming, 4-18
terminal blocks & cables, 8-2 nurperic, 2-14
Windows, 8-6 options, 4-3
help showing terminals, 2-25
online, 3-3 initializing
technical support, D-1 arrays, 5-4
hiding labels, 4-4 shift registers, 4-44
highlighting execution inputs ?flnd outputs
debugging Vs, 3-12 optional, 7-9
settings required, 7-9
I inputs, identifying, 1-3

inputs, setting, 7-9

installing the course software, ix

instances of subVIs
determining, 3-17

/0
communicating with instruments, 9-29
GPIB software architecture, 9-7, C-18
ser%al, 9-3,C-10) suspending execution, 3-16
serial hardware overview, 9-6 instrument control, 9-1, 9-2
VISA, 9-23 GPIB, 9-2

icon and connector panes, 7-4

Instrument I/O Assistant, 9-12
icons, 2-3, 7-4

' interfaces, other, 9-6
creating, 7-4 instrument drivers
editing (figure), 7-5 categories, 9-30
implementation, 1-6 definition, 9-29
%mplementlng VIs, '4-1 example (figure), 9-19, 9-30
incrementally running VIs, 3-13 locating, 9-29
1ndlcatf)rs,‘ 2-13 understanding, 9-30
as51gn1'ng to connector pane, 7-8 instrument drivers (NI resources), D-1
numeric, 2-14 Instrument I/O Assistant, 9-12

figure, 2-14 instrument types, 9-2
string display types, 4-13

type definitions, 5-27

LabVIEW Introduction Course Manual -6 ni.com

interfaces, 9-6

syntax, 9-24
iteration terminals

For Loops, 4-36

While Loops, 4-28
iterative data transfer, 4-43

K
KnowledgeBase, D-1

L

Labeling tool, 2-36

figure, 2-36
labels and captions, 4-2

hiding labels (figure), 4-4
LabVIEW

data directory, 6-3

Help, 3-2

navigating, 2-1 to 2-63
LabVIEW Getting Started Window

(figure), 2-4

LabVIEW Help, 3-3
loops

For Loops, 4-36

figure, 4-36
While Loops, 4-27

maintenance, 1-7
MAX (Measurement & Automation
Explorer), 8-6
measurement data, storing, 6-1
measurements
concepts, B-3
fundamentals, B-1
increaing quality, B-12
noise, B-16
overview (figure), B-1, B-3
sampling rates (figure), B-16
scales, 8-7
shape recovery, B-15
signal conditioning, B-5

© National Instruments Corporation

Index

signal sources, B-4

smallest detectable change, B-12

systems, B-8

computer-based, B-2

menus

figure, 4-6

shortcut, 2-16
modular applications, developing, 7-1
modularity, 7-2

figure, 7-3
multiple-plot waveform graphs, 4-53
multiplot XY graphs, 4-55

National Instruments support and
services, D-1
navigating LabVIEW, 2-1 to 2-63
new projects, creating, 2-5
new Vls, creating, 2-5
NI Certification, D-2
NI Example Finder, 3-4
figure, 3-4
NI-DAQ
simulated devices, creating, 8-8
simulated devices, removing, 8-8
nodes, 2-22
database access, 2-23
display modes (figure), 2-23
nodes versus icons, 2-22
noise, decreasing, B-16
numeric controls and indicators, 2-14
numeric conversion, 4-37
numerics, 4-9
complex numbers, 4-11
floating-point numbers, 4-10
integers, 4-11

-7 LabVIEW Introduction Course Manual

Index

0

objects, wiring automatically on block
diagram, 2-24

online help, 3-3
opening VlIs, 2-6
Operating tool, 2-33

figure, 2-33
order of cluster elements, 5-15
order of execution, 2-43
order, in clusters, 5-15
organizing project items, 2-11
outputs

identifying, 1-3

setting, 7-9

P

palettes
controls, 2-15
figure, 2-15
Tools, 2-32
Tools (figure), 2-32
parallelism, 10-21
Parts of a VI. See VIs, parts
phenomena, B-4
plotting data, 4-50
Positioning tool, 2-34
figure, 2-34
resizing (figure), 2-35
Probe tool
See probes
probes
debugging VlIs, 3-13
default, 3-14
generic, 3-14
indicators, 3-14
supplied, 3-14
types of, 3-13
problem solving, 1-1

LabVIEW Introduction Course Manual

programming
examples (NI resources), D-1
parallelism, 10-21
sequential, 10-2
sequential (figure), 10-3
state machines, 10-5, 10-6
project, 1-10
figure, 1-11
Project Explorer, 2-9
toolbars, project-related, 2-9
window (figure), 2-10
Project Explorer window, 2-9
project, state transition diagram
figure, 1-11, 1-12
projects
adding files, 2-10
creating, 2-10
new, 2-5
organizing, 2-11
removing files, 2-11
saving, 2-12
viewing files, 2-12
property dialog boxes, 2-16
figure, 2-17

R

Read from Measurement File VI, 6-4
Read From Spreadsheet File VI, 6-4
refnums, file I/0, 6-2

relating data, 5-1

removing project files, 2-11
requirements for getting started, viii
resizing front panel objects, 4-8

Run button errors, 2-49

ni.com

Index

) smart probes
sampling rates (figure), B-16 See probes
saving software (NI resources), D-1
projects, 2-12 software development method, 1-2, 1-8
Vis, 2-7 spacing and alignment, 4-5
saving VIs as (figure), 2-8 starting a VI, 2-4
scales, 8-7 state machine
scenario, 1-2 design pattern
scope chart, 4-50 Case structure, 10-9
SCXI controlling
signal conditioning default transition, 10-8
amplification, B-6 multiple state transitions, 10-9
linearization, B-7 two-state transition, 10-8
phenomena and transducers State Diagram Toolkit, 10-10
(table), B-4 transition array, 10-10
transducer excitation, B-7 state machines, 10-5, 10-6
searching applying, 10-6
for controls, VIs, and functions, 2-29 controlling, 10-7
figure, 2-29 infrastructure, 10-7
sequential programming (figure), 10-3 infrastructure (figure), 10-7
serial port communication, 9-3, C-10 transitioning, 10-8
character frame, 9-5 state transition diagram, designing, 1-5
data transfer rate, 9-5 stepping through VIs
figure, 9-4 debugging Vls, 3-13
hardware overview, 9-6 stopping While Loops (figure), 4-29
shift registers strict type definitions, 5-28
initializing, 4-44 strings, 4-12
stacked, 4-45 display types, 4-13
shortcut menus, 2-16 strip chart, 4-50
figure, 2-16 structure tunnels, 4-28
signal conditioning, B-5 structures
See also SCXI Case, 4-61
amplification, B-6 stacked shift registers, 4-45
figure, B-6 tunnels, 4-63

linearization, B-7
phenomena and transducers (table), B-4
transducer excitation, B-7
signal sources, B-4
simulating devices, 8-8
single-plot waveform graphs, 4-53
single-plot XY graphs, 4-55
single-stepping, debugging Vs, 3-13

© National Instruments Corporation -9 LabVIEW Introduction Course Manual

Index

subVls, 2-22, 7-9 showing on block diagram, 2-25
assigning controls and indicators to testing, 1-6
connector pane, 7-8 text and fonts, 4-6
configuring the connector pane, 7-7 timing VIs, wait functions, 4-42
creating, 7-10 timing, elapsed time, 4-42
creating (figure), 7-10 tips, user interface, 4-7
creating icons, 7-4 toolbars
determining current instance, 3-17 block diagram, 2-26
displaying chain of callers, 3-17 front panel window, 2-17
editing icons (figure), 7-5 project-related, 2-9
icons, 7-4 tools
modifying connector panes, 7-7 Labeling, 2-36
opening and editing, 7-9 figure, 2-36
setting inputs and outputs, 7-9 Operating, 2-33
suspending execution, 3-16 figure, 2-33
supplied probes, 3-14 Positioning
support, technical, D-1 figure, 2-34
suspending execution, 3-16 positioning, 2-34
sweep chart, 4-50 figure, 2-35
wiring, 2-37
T figure, 2-37
Tools palette, 2-32, 2-37

tab controls, 4-7
targets, 2-9
task timing, 8-15

analog output, 8-22
task triggering, 8-16

analog output, 8-23
technical support, D-1
templates, creating a VI, 2-5
terminals, 2-19

figure, 2-32
training (NI resources), D-2
transducers, B-4
excitation, B-7
figure, B-6
linearization, B-7
phenomena and transducers (table), B-4
troubleshooting, 3-9
conditional, 4-27 troubleshooting (NI resources), D-1

Context Help window appearance, 3-2, troubleshooting and debugging VIs, 3-1
7.9 tunnels, 4-63

controls, indicators, and constants, 2-20 While Loop

figure, 2-20, 2-21 ftlg'u‘re, 4-28
count, 4-36 type definitions, 5-25, 5-27

data types, 4-9 defining, 5-27
iteration on For Loops, 4-36 strict, 5-28
iteration on While Loops, 4-28

optional, 7-9

recommended, 7-9

required, 7-9

selector, 4-61

LabVIEW Introduction Course Manual 1-10 ni.com

Index

U parts
Unbundle By Name function, 5-17 block diagram, 2-2
Unbundle function, 5-17 icon and connector panel, 2-3
undefined data, preventing, 3-18 present, 2-48
unexpected data, 3-18 running, 2-49
user interface saving, 2-7
decorations, 4-8 saving as (figure), 2-8
menus, menus, 4-8 starting, 2-4
system controls, system controls, 4-7 subVls, 7-9
tab controls, 4-7 timing, 4-42
tips and tools, 4-7 troubleshooting and debugging, 3-1
user probes VISA, 9-23, 9-24
See probes terminology, 9-23
using color, 4-4 with serial (figure), 9-14, 9-25
Utilities, NI Example Finder, 3-4
'}
V wait functions, 4-42
viewing files in projects, 2-12 waveform charts, 4-50
virtual instruments, 2-2 figure, 4-50
Vis, 2-2 wiring, 4-51
acquire, 2-47 waveform graphs
analyze, 2-47 figure, 4-52
broken, 2-49, 3-9 multiple-plot, 4-53
broken, causes, 3-9, 3-10 single-plot, 4-53
building, 2-46 Web resources, D-1
configuring the connector pane, 7-7 While Loops, 4-27
correcting, 2-49, 3-9 auto-indexing arrays, 5-4
creating for a template, 2-5 conditional terminals, 4-27
creating subVls, 7-10 error handling, 4-29
figure, 7-10 figure, 4-27
error handling, 3-19 iteration terminals, 4-28
front panel window, 2-2 stacked shift registers, 4-45
icons, 2-22, 7-2 stopping, 4-29
implementing, 4-1 stopping (figure), 4-29
loading status (figure), 2-7 tunnels, 4-28
modularity, 7-2 windows, Project Explorer, 2-9
figure, 7-3 figure, 2-10
new, 2-5
nodes, 2-22
opening, 2-6

© National Instruments Corporation I-11 LabVIEW Introduction Course Manual

Index

wires, 2-24
automatic, 2-24
common types, 2-24
data types, 2-24
wiring
automatically, 2-24
charts, 4-51
tunnels, 4-63
Wiring tool, 2-37
figure, 2-37
with serial, 9-24

Write to Measurement File VI, 6-4
Write to Spreadsheet File VI, 6-4

LabVIEW Introduction Course Manual

1-12

X

XY graphs
configuring, 4-52
multiplot, 4-55
single-plot, 4-55

ni.com

Course Evaluation

Course

Location

Instructor Date

Student Information (optional)

Name

Company Phone

Instructor
Please evaluate the instructor by checking the appropriate circle. Unsatisfactory Poor Satisfactory Good Excellent

Instructor’s ability to communicate course concepts O O O O O
Instructor’s knowledge of the subject matter O @) @) O O
Instructor’s presentation skills O O O O O
Instructor’s sensitivity to class needs O @) @) O O
Instructor’s preparation for the class O O O O O
Course

Training facility quality @) O O O ©)
Training equipment quality O O O O O

Was the hardware set up correctly? O Yes O No

The course length was O Too long O Justright O Too short

The detail of topics covered in the course was O Too much O Justright O Not enough
The course material was clear and easy to follow. O Yes O No O Sometimes

Did the course cover material as advertised? O Yes O No

I had the skills or knowledge I needed to attend this course. O Yes O No If no, how could you have been
better prepared for the course?

What were the strong points of the course?

What topics would you add to the course?

What part(s) of the course need to be condensed or removed?

What needs to be added to the course to make it better?

How did you benefit from taking this course?

Are there others at your company who have training needs? Please list.

Do you have other training needs that we could assist you with?

How did you hear about this course? O NI Web site O NI Sales Representative O Mailing O Co-worker
O Other

